Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Dependency-based empty category detection via ...
Search
takegue
June 22, 2015
Technology
0
77
Dependency-based empty category detection via phrase structure trees
文献紹介 Dependency-based empty category detection via phrase structure trees
takegue
June 22, 2015
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
850
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.4k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1k
Rettyにおけるデータ活用について
takegue
0
880
Sparse Overcomplete Word Vector Representations
takegue
0
210
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
210
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
A simple pattern-matching algorithm for recovering empty nodes and their antecedents
takegue
0
120
Other Decks in Technology
See All in Technology
MySQL InnoDB Data Recovery - The Last Resort
lefred
0
110
Part1 GitHubってなんだろう?その1
tomokusaba
3
740
Next.jsと状態管理のプラクティス
uhyo
3
1.3k
問 1:以下のコンパイラを証明せよ(予告編) #kernelvm / Kernel VM Study Kansai 11th
ytaka23
3
480
雑に疎通確認だけしたい...せや!CloudShell使ったろ!
alchemy1115
0
210
Cursorを全エンジニアに配布 その先に見据えるAI駆動開発の未来 / 2025-05-13-forkwell-ai-study-1-cursor-at-loglass
itohiro73
2
420
OPENLOGI Company Profile
hr01
0
64k
エンジニアリングで組織のアウトカムを最速で最大化する!
ham0215
1
300
MCP でモノが動くとおもしろい/It is interesting when things move with MCP
bitkey
2
450
AWSを利用する上で知っておきたい名前解決の話
nagisa53
6
790
LLMの開発と社会実装の今と未来 / AI Builders' Community (ABC) vol.2
pfn
PRO
1
120
AndroidアプリエンジニアもMCPを触ろう
kgmyshin
2
650
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
33k
Faster Mobile Websites
deanohume
307
31k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Optimising Largest Contentful Paint
csswizardry
37
3.2k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Designing for Performance
lara
608
69k
Being A Developer After 40
akosma
91
590k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Thoughts on Productivity
jonyablonski
69
4.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
Transcript
文献紹介: Dependency-based empty category detection via phrase structure trees 長岡技術科学大学
自然言語処理研究室 竹野 峻輔
概要 Chinese Treebank における 空範疇検出. 係り受け構造 におけるモデル化 - 出力は係り受け構造 素性抽出は句構造から
という特殊なモデル - 言語学的性質に着目した素性群の提案 Nianwen Xue and Yaqin Yang. 2013. Dependency-based empty category detection via phrase structure trees. In Proceedings of NAACL-HLT 2013, pages 1051–1060. .
導入 • なぜ空範疇検出に取り組むのか? – pro-drop language では 頻繁に空範疇が出現する – 空範疇
∋ ゼロ代名詞, NP痕跡, 関係代名詞の省略 … – 参照解決の問題. (文脈を機械的に理解するため) – 機械翻訳 では 大きな問題 • Word alignment の精度の改善(Xiang, 2013) • 空範疇を適切に埋めてやることでBLEUが大幅に向上 (Xian et al. 2013, Chung and Gildea 2010)
モデル 主辞hと隣接する単語t の (渉及, 的) → *OP* 組み合わせ (h, t)に対する空範疇の分類問題.
- 複数の空範疇が連続する場合にも対応できる - 主辞 と 空範疇の関係 が 明示的になる 主辞単位で評価できるので 簡潔で明確
モデル • 係り受け 構造に対して分類(上) • 素性抽出は句構造(再パースしたもの)から抽出(下)
素性抽出:overviews • 言語学的な性質に着目した素性群6種 – Horizonal features – Vertical features –
Targeted grammatical constructions – Head information – Transitivity features – Semantic role features
素性抽出:ablation test
素性抽出:Horizonal features • 主辞hや空範疇の隣接の単語p, t 前後関係を抽出したもの – 主辞h, 空範疇の隣接の単語p, tの
表層系およびPOS label – 上記ラベルの組み合わせ素性 – 主辞と空範疇の隣接の単語の距離 same, immediately before/after, near before/after, other – h ~ t までの間にある動詞の数 – h ~ t までの間にあるカンマの数
素性抽出:Vertical features • 主辞h や 空範疇の隣接の単語p, t の構造的な特 徴に着目した素性 –
t から p と t の共通の親 Aまでのパス – h ~ t までのパス – p と t の共通の親 A から hまでのパス
素性抽出:Targetd grammatical construction • 言語学的構造(IP node) に 着目した 特徴 –
隣接の単語t が IPの始まりに位置するか? – 隣接の単語t が 主語の無いIPの始まりに位置するか? – tが左端にある 親IPの 左兄弟/右兄弟のラベル – tが左端にある親IPのgovernning-verbの 表層系 – tが左端にある親IPはlocalizer phraseの補語になるか? – tが左端に有る親IPは主格の役割を持っているか?
素性抽出:Head information • 複数の述語が 一つの空範疇を共有する時の 構造情報を 捉えるための特徴 – 係り受け構造では ECに対し
head はひとつのみ – IP中に VPが複数あるような構造を対象とした素性 – 動詞が head になりうるか否かを表す2値 • 再パース 際の誤り も意識している • おそらく RNR(右枝節繰り上がり)の検出に効果的
素性抽出:ablation test
実験 CTBの空範疇の種類 • pro : small pro(ゼロ代名詞) • PRO: big
pro (主語代名詞. 文中に参照を持つ) • OP : 関係代名詞の省略を表す空範疇 • T : NP痕跡. 名詞句の移動を表す空範疇 • RNR: 右枝接点繰り上げ 構文を表す • * : 受動態や繰り上げの痕跡を表す • ? : 不明. その他の空範疇
実験-データセット • CTB v6.0
実験-結果
結論 • 係り受け構造に対する空範疇検出モデルの提案 – ECが複数有る場合にも対応できる(再現率の改善) – 言語学的性質に着目することで (Cai et al.
2011) のモデルより 大きく改善 +7.4ポイント – pro に 対する性能はかなり低い • cf. (Wang et al. 2015) では 大きく 改善されている