Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
word2vecで女性向けQ&Aサイトを解析してみた
Search
tatsushim
June 17, 2015
Research
0
6.2k
word2vecで女性向けQ&Aサイトを解析してみた
2015/06/10
IVS CTO NightのLTで発表したプレゼン資料です。
word2vecにmamariQ内のテキストを使用してみました。
tatsushim
June 17, 2015
Tweet
Share
More Decks by tatsushim
See All by tatsushim
DockerとAmazon SageMakerで実現した機械学習システムのプロダクション移行
tatsushim
0
26k
コミュニティサービスにおける機械学習のためのアノテーション
tatsushim
0
2k
日本のママをコンテナで支える
tatsushim
1
3k
コネヒトが考える技術選択の仕方について
tatsushim
0
21k
コネヒトが考えるサービスづくりに必要な技術とその考え方について
tatsushim
2
3k
独身男性のためのデータドリブン講座
tatsushim
0
6.7k
Other Decks in Research
See All in Research
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
170
最近のVisual Odometryと Depth Estimation
sgk
1
260
機械学習による言語パフォーマンスの評価
langstat
6
680
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
330
湯村研究室の紹介2024 / yumulab2024
yumulab
0
240
機械学習でヒトの行動を変える
hiromu1996
1
200
Weekly AI Agents News! 7月号 論文のアーカイブ
masatoto
1
210
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
650
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
140
第60回名古屋CV・PRML勉強会:CVPR2024論文紹介(AM-RADIO)
naok615
0
240
大規模言語モデルを用いた日本語視覚言語モデルの評価方法とベースラインモデルの提案 【MIRU 2024】
kentosasaki
2
500
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
220
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
296
20k
The Cult of Friendly URLs
andyhume
78
6k
Navigating Team Friction
lara
183
14k
It's Worth the Effort
3n
183
27k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Producing Creativity
orderedlist
PRO
341
39k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Six Lessons from altMBA
skipperchong
26
3.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
A better future with KSS
kneath
238
17k
Transcript
word2vecͰঁੑ͚QˍA αΠτΛղੳͯ͠Έͨ Tatsuro Shimada <
[email protected]
> tatsushim @ Connehito, Inc
Connehito Inc. ౡాୡ࿕ʢ͠·ͩͨͭΖ͏ʣ • Connehito, Inc CTO • Πϯϑϥ͔Βϑϩϯτ·Ͱ •
͋ͱ͓՛ࢠͷങ͍ग़͠ PROFILE @tatsushim 2
ϚϚϦͱʁ Connehito Inc. 3
Connehito Inc. ϚϚϦjp (❨web)❩ ϚϚϦ2 (❨ΞϓϦ)❩ ϚϚϦKQ / ϚϚϦ2 ϝσΟΞ
ίϛϡχςΟ 4
Connehito Inc. ࣭ͷճ ˋ ճ͕ͭ͘·Ͱ ҎԼ ΞϓϦͷࡏ࣌ؒ Ҏ্ ѹతͳαʔϏεͷ
+VO +VM "VH 4FQ 0DU /PW %FD +BO 'FC લ݄ൺˋ ྦྷܭߘ ৷ɾग़࢈ͰΉਓͷ ਓʹਓ͕݄̍ΞΫηε 5
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 6 λʔήοτ ࢲ
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 7 ঁੑ λʔήοτ ࢲ
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 8 ঁੑ ϚϚ λʔήοτ ࢲ
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 9 ঁੑ ϚϚ λʔήοτ ࢲ
৷ ग़࢈
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 10 ঁੑ ϚϚ λʔήοτ ࢲ
உੑ ৷ ग़࢈
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 11 ঁੑ ϚϚ λʔήοτ ࢲ
உੑ ৷ ग़࢈ ಠΓ
Connehito Inc. ϚϚϦKQ / ϚϚϦ2 12 ঁੑ ϚϚ λʔήοτ ࢲ
உੑ ಠΓ ৷ ग़࢈ Ͱ͖ͳ͍
ʘ(^o^)ʗ
ʘ(^o^)ʗ Ϣʔβʔͷ͜ͱཧղ͍ͨ͠ʂ
15
16 word2vec
None
Connehito Inc. • Tomas Mikolovࢯ (࣌Google, ݱFacebook)͕ఏҊ • ୯ޠಉ࢜ͷؔੑΛϕΫτϧͱͯ͠දݱ •
୯ޠͷྨࣅͷܭࢉ͠Ҿ͖͕Մೳ word2vecͱʁ 18
19
20 ۩ମྫΛݟͯΈΑ͏
word2vecͷදతͳ2ͭͷ͍ํ Connehito Inc. 21
Display similar words Connehito Inc. 22
None
ྨٛޠ
Interesting properties of the word vectors Connehito Inc. 25
Connehito Inc. 26 word2vecͷྫ vector(‘France')
Connehito Inc. 27 word2vecͷྫ - vector(‘Paris') vector(‘France')
Connehito Inc. 28 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) vector(‘France')
Connehito Inc. 29 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France')
Connehito Inc. 30 word2vecͷྫ vector(‘Paris')
Connehito Inc. 31 word2vecͷྫ - vector(‘France') vector(‘Paris')
Connehito Inc. 32 word2vecͷྫ - vector(‘France') + vector(‘Italy’) vector(‘Paris')
Connehito Inc. 33 word2vecͷྫ - vector(‘France') + vector(‘Italy’) = vector('Rome')
vector(‘Paris')
Connehito Inc. 34 word2vecͷྫ vector(‘king')
Connehito Inc. 35 word2vecͷྫ - vector(‘man') vector(‘king')
Connehito Inc. 36 word2vecͷྫ - vector(‘man') + vector(‘woman’) vector(‘king')
Connehito Inc. 37 word2vecͷྫ - vector(‘man') + vector(‘woman’) = vector('queen')
vector(‘king')
ཧͯ͠ΈΔ Connehito Inc. 38
Connehito Inc. 39 word2vecͷྫ - vector(‘Paris') vector(‘France')
Connehito Inc. 40 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) vector(‘France')
Connehito Inc. 41 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France')
Connehito Inc. 42 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France')}
Connehito Inc. 43 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ }
Connehito Inc. 44 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ } +
Connehito Inc. 45 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ } } +
Connehito Inc. 46 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ } } ౦ژ +
Connehito Inc. 47 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ } } ౦ژ + =
Connehito Inc. 48 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ } } ౦ژ + = }
Connehito Inc. 49 word2vecͷྫ - vector(‘Paris') + vector(‘Tokyo’) = vector('Japan')
vector(‘France') ͋ΔࢢΛटͱ͢Δࠃ } } ౦ژ + = }౦ژΛटͱ͢Δࠃ
50
51 mamariQͰword2vecͯ͠ΈΔ
None
୯ޠͷҙຯΛද͢୯ޠ Connehito Inc. 53
Connehito Inc. 54 ʮಈʯin mamariQ Word: ಈ Word Cosine distance
------------------------------------------------------------------------ ҙ 0.527825 ϙίϙί 0.516658 ҧײ 0.432082 ಈ͖ 0.430563 ͠Όͬ͘Γ 0.406297 ͙͍ͬͨ͘͢ 0.386457 ಈ͍ 0.383030 ى෬ 0.381906 ϙίο 0.377959
Connehito Inc. 55 ʮυΫϯυΫϯʯin mamariQ Word: υΫϯυΫϯ Word Cosine distance
------------------------------------------------------------------------ ຺ଧͭ 0.454460 ϙίο 0.425674 Ͳ͘Ͳ͘ 0.425287 ϐΫο 0.418931 ಥͬுΔ 0.417948 ϐΫϐΫ 0.415464 લଆ 0.413287 ͭͬͺΔ 0.412516
Connehito Inc. 56 ʮೕ৯ʯin mamariQ Word: ೕ৯ Word Cosine distance
------------------------------------------------------------------------ ख͔ͮΈ 0.472250 ͔ͭΈ 0.445568 ॏ౬ 0.432616 ͓͔Ώ 0.425068 τΠτϨ 0.415463 ͨΜͺ࣭͘ 0.412253 ϕϏʔμϊϯ 0.393488 λϯύΫ࣭ 0.392157 ৯ࡐ 0.390477
୯ޠͱ୯ޠͷؔੑ Connehito Inc. 57
Connehito Inc. 58 vector(‘ެཱ') ୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 59 - vector(‘ଉࢠ') vector(‘ެཱ') ୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 60 - vector(‘ଉࢠ') + vector(‘່’) vector(‘ެཱ') ୯ޠͷ໘ന͍ؔੑ in
mamariQ
Connehito Inc. 61 - vector(‘ଉࢠ') + vector(‘່’) = vector('ࢲཱ') vector(‘ެཱ')
୯ޠͷ໘ന͍ؔੑ in mamariQ
62
63 ঁͷࢠͷํ͕ࢲཱΛݕ౼͢Δʁ
Connehito Inc. 64 vector(‘νϡʔϋΠ') ୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 65 - vector(‘͓͞Μ') vector(‘νϡʔϋΠ') ୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 66 - vector(‘͓͞Μ') + vector(‘͓͞Μ’) vector(‘νϡʔϋΠ') ୯ޠͷ໘ന͍ؔੑ in
mamariQ
Connehito Inc. 67 - vector(‘͓͞Μ') + vector(‘͓͞Μ’) = vector('Ϗʔϧ') vector(‘νϡʔϋΠ')
୯ޠͷ໘ന͍ؔੑ in mamariQ
68
69 உੑͷํ͕Ϗʔϧ͖ʁ
Connehito Inc. 70 vector(‘ՄѪ͍') ୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 71 - vector(‘ଉࢠ') vector(‘ՄѪ͍') ୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 72 - vector(‘ଉࢠ') + vector(‘່’) vector(‘ՄѪ͍') ୯ޠͷ໘ന͍ؔੑ in
mamariQ
Connehito Inc. 73 - vector(‘ଉࢠ') + vector(‘່’) = vector('ՄѪ͍') vector(‘ՄѪ͍')
୯ޠͷ໘ന͍ؔੑ in mamariQ
Connehito Inc. 74 - vector(‘ଉࢠ') + vector(‘່’) = vector('ՄѪ͍') vector(‘ՄѪ͍')
୯ޠͷ໘ന͍ؔੑ in mamariQ ʊਓਓਓਓਓʊ ʼɹՄѪ͍ɹʻ ʉY^Y^Y^Y
None
ͨͩͷόΧ
ຊޠʹword2vecదԠ͢ΔࡍͷTips Connehito Inc. 77
Connehito Inc. 78 ຊޠʹword2vecదԠ͢ΔࡍͷTips
Connehito Inc. • ࣙॻʹmecab-ipadic-neologdΛ͏ - Web্ͷݴޠࢿݯ͔Βಘͨ৽ޠʹରԠ 79 ຊޠʹword2vecదԠ͢ΔࡍͷTips
Connehito Inc. • ࣙॻʹmecab-ipadic-neologdΛ͏ - Web্ͷݴޠࢿݯ͔Βಘͨ৽ޠʹରԠ 80 ຊޠʹword2vecదԠ͢ΔࡍͷTips • ۀքݻ༗ͷϫʔυͪΌΜͱొ͢Δ
- Ex. 24w3d = ৷͔Β24िͱ3
Connehito Inc. • ࣙॻʹmecab-ipadic-neologdΛ͏ - Web্ͷݴޠࢿݯ͔Βಘͨ৽ޠʹରԠ 81 ຊޠʹword2vecదԠ͢ΔࡍͷTips • ύϥϝʔλௐ
- Ex. αʔϏεʹ߹Θͤͨwindow sizeΛ • ۀքݻ༗ͷϫʔυͪΌΜͱొ͢Δ - Ex. 24w3d = ৷͔Β24िͱ3
82
83 ݁ہԿʹ͑Δͷ͔ʁ
Connehito Inc. 84 Ԡ༻ઌ
Connehito Inc. • ྨٛޠݕग़ 85 Ԡ༻ઌ
Connehito Inc. • ྨٛޠݕग़ 86 • QˍAίϛχϡχςΟͰQʹରͯ͠࠷ྑ ͍ճΛܾΊΔͱ͖ͷfeatureʹ͏ͱ͔(࣮ ࡍԠ༻ͨ͠จ͕͋Δ) Ԡ༻ઌ
Connehito Inc. • ྨٛޠݕग़ 87 • QˍAίϛχϡχςΟͰQʹରͯ͠࠷ྑ ͍ճΛܾΊΔͱ͖ͷfeatureʹ͏ͱ͔(࣮ ࡍԠ༻ͨ͠จ͕͋Δ) •
͍͔ͭ͘Ծઆ͕͋ΔͷͰɺ্ख͘ߦͬͨΒ จʹͯ͠ൃ৴͍͖ͯ͠·͢ Ԡ༻ઌ
͜͜·Ͱ͕word2vecͷ͓ Connehito Inc. 88
Connehito Inc. • Ҏ্͕ɺword2vecΛͬͯΈ͓ͨͰ͢ 89 • IVS CTO NightॳࢀՃͰϫΫϫΫͯ͠·͢ •
͜͏͍͏RˍDΛΈΜͳ͍ͭͬͯɺͲ͏ औΓೖΕͯΔͷ͔Γ͍ͨ • ͜ͷޙྑ͔ͬͨΒ͓͍ͤͯͩ͘͞͞ վΊ͓ͯٓ͘͠ئ͍͠·͢ʂ
Connehito Inc. • Ҏ্͕ɺword2vecΛͬͯΈ͓ͨͰ͢ 90 • IVS CTO NightॳࢀՃͰϫΫϫΫͯ͠·͢ •
͜͏͍͏RˍDΛΈΜͳ͍ͭͬͯɺͲ͏ औΓೖΕͯΔͷ͔Γ͍ͨ • ͜ͷޙྑ͔ͬͨΒ͓͍ͤͯͩ͘͞͞ վΊ͓ͯٓ͘͠ئ͍͠·͢ʂ ͝ਗ਼ௌ༗͏͍͟͝·ͨ͠ʂ