Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CSの生産性改善を支える分析環境 Mercari CS/CRE Tech Talk #1
Search
ukitaka
July 04, 2021
Technology
1
2.6k
CSの生産性改善を支える分析環境 Mercari CS/CRE Tech Talk #1
ukitaka
July 04, 2021
Tweet
Share
More Decks by ukitaka
See All by ukitaka
switchのexhaustiveness/redundancy チェック 理論と実装 わいわいswiftc #8 @ukitaka
ukitaka
0
180
SwiftのDemanglerを書く @ わいわいswiftc番外編
ukitaka
0
410
Swiftの型システムに入門する - iOSDC Japan 2018
ukitaka
10
5.7k
Responder Chainを使って コードをスッキリさせたい - 第1回 HAKATA.swift
ukitaka
6
1.3k
理論から入門するswift/lib/Sema - わいわいswiftc #1
ukitaka
5
1.6k
Realmの処理を再利用可能かつ合成可能にする
ukitaka
0
880
マルチスレッドRxSwift @ 社内RxSwift勉強会
ukitaka
5
1.2k
今日こそ理解するHot / Cold @社内RxSwift勉強会
ukitaka
14
2.6k
RxSwift コードリーディングの勘所@社内RxSwift勉強会
ukitaka
3
990
Other Decks in Technology
See All in Technology
日経電子版におけるリアルタイムレコメンドシステム開発の事例紹介/nikkei-realtime-recommender-system
yng87
1
490
Nix入門パラダイム編
asa1984
2
200
CAMERA-Suite: 広告文生成のための評価スイート / ai-camera-suite
cyberagentdevelopers
PRO
3
270
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.6k
Amazon FSx for NetApp ONTAPを利用するにあたっての要件整理と設計のポイント
non97
1
160
Fargateを使った研修の話
takesection
0
110
いまならこう作りたい AWSコンテナ[本格]入門ハンズオン 〜2024年版 ハンズオンの構想〜
horsewin
9
2.1k
とあるユーザー企業におけるリスクベースで考えるセキュリティ業務のお話し
4su_para
3
320
Product Engineer Night #6プロダクトエンジニアを育む仕組み・施策
hacomono
PRO
1
460
GitHub Universe: Evaluating RAG apps in GitHub Actions
pamelafox
0
170
プロダクトチームへのSystem Risk Records導入・運用事例の紹介/Introduction and Case Studies on Implementing and Operating System Risk Records for Product Teams
taddy_919
1
170
カメラを用いた店内計測におけるオプトインの仕組みの実現 / ai-optin-camera
cyberagentdevelopers
PRO
1
120
Featured
See All Featured
Making Projects Easy
brettharned
115
5.9k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
4 Signs Your Business is Dying
shpigford
180
21k
How GitHub (no longer) Works
holman
311
140k
Faster Mobile Websites
deanohume
304
30k
How STYLIGHT went responsive
nonsquared
95
5.2k
Navigating Team Friction
lara
183
14k
Code Reviewing Like a Champion
maltzj
519
39k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
Adopting Sorbet at Scale
ufuk
73
9k
GraphQLの誤解/rethinking-graphql
sonatard
66
9.9k
Transcript
1 CSの生産性改善を支える分析環境 Mercari CS/CRE Tech Talk #1 @ukitaka
2 2018年にiOSエンジニアとしてメルカリ 福岡 オフィスに入社、その後色々あって現在は CRE/CX-PlatformのEngineering Manager. 音楽とアイドルとSplatoonと野鳥が好きで す。 Yuki
Takahashi (@ukitaka)
3 今日の話 メルカリのお問い合わせ対応ツール(以下、Contact-Tool) を 作っている僕らのチームが、どのようにデータを活用しながら CSの生産性改善を行っているのか、その環境やツールについて 簡単に紹介します。
4 Contact-Toolについて • Contact-Toolを内製しているメインの理由は、メルカリというプロダクトに最適 化されたお客様体験を提供するため • とはいえお客様体験だけを追い求めればよいというわけではない • CSの方々に使ってもらうために、ツールとして効率性・生産性・コストなどに責任 を持つ必要がある
お客様体験の改善と生産性の改善
5 画像 良いコンタクトセンターが考慮すべきこと お客様に価値を届けるためには、効率性を 考えなければいけません。 効率的な運用ができないと、コスト面で会 社にとっての負担が大きくなってしまうばか りか、お客様に良い体験を提供することす らままならなくなってしまいます。 なのでツールとしても効率性に責任を持つ
必要があります。 「コールセンターマネジメント 戦略的顧客応対 理論と実践」 からの引用
6 生産性を図るための指標の1つ: AHT • AHT = 1件のお問い合わせの対応にかかる平均時間 • ものすごく単純化すると、すべてのお問い合わせに返信するためには、 お問い
合わせ数 × AHT 秒分の時間が必要になる • これに応じて必要人員が計算され、その人数に応じたコストがかかってくる構造 AHT (Average Handling Time)
7 お問い合わせ数 × AHT コスト削減へのアプローチ (お客様側) • VoCを元にプロダクト改善を行い、お困りごと自体を減らす • ガイドやチャットボットによって自己解決率をあげる
8 お問い合わせ数 × AHT コスト削減へのアプローチ (ツール側) • ツールのUIや機能によって対応を効率化する • CSの方々のオペレーションを改善する
9 ここまでのまとめ • お問い合わせ対応ツールとして、お客様体験の向上だけでなく、効率性・生産性 ・コストに責任をもつ必要がある • 効率性・生産性を改善し、コスト削減につなげるために、ツールとして追うべき指 標の1つにAHT(Average Handling Time)
がある
10 生産性改善に取り組むための仕組み
11 生産性改善に取り組むための仕組み • AHTを計測し、そのデータを集めることができる必要がある • そこから仮説をたて、改善し、効果を検証する • それを繰り返すことで成果を積み重ねていく 計測して改善する
12 生産性改善に取り組むための仕組み • データ計測: FE/BEでのロギングの仕組み • データ収集: CloudSQLからBigQueryに集めるpipeline • 分析環境:
BigQuery, AI Platform Notebooks • 可視化: Looker, AI Platform Notebook 利用しているツール・仕組み
13 Contact-Toolのアーキテクチャについて 自分自身でデータストアをもつ
14 Contact-Toolのアーキテクチャについて FE/BEがわかれている
15 HTを計測するためのログの仕組み • Backendでのログ ◦ アクションしたログが確実に存在するが、APIが叩かれる単位でしかログが 取れない • Frontendでのログ ◦
細かい操作のログまで取れるが、欠損・遅延も起こる ◦ クライアントPCの時刻設定に依存してしまう • 基本はBackendのログを使いつつ、詳細な分析が必要な場合にはFrontend のログを組み合わせて使う Frontend/Backendそれぞれでログの仕組み(自作) を持つ
16 参考: なぜGoogle AnalyticsやDatadog UX Monitoring を活用しないか? • Google AnalyticsやDatadog
User Monitoringなど、代替となるツールは いくつかある • しかし個人情報を扱う業務の性質上、セキュリティ的なリスクや、そもそも外部に アクセスできないなどのシステム的な制約があった • 結果として自作することになった
17 データを収集するための仕組み • 前提として、メルカリはマイクロサービスアーキテクチャを採用している • 先程あげたようなログも一度Contact-ToolのCloudSQLに保存された後、分 析のためにBigQueryに集められる • Cloud Composer
/ Cloud Dataflow等を組み合わせたパイプラインの仕組 みを弊社データプラットフォームチームが提供している BigQueryに集められる
18 データを収集するための仕組み (参考記事) メルペイにおける大規模バッチ処理 メルカリ・メルペイの成長を支える データ基盤と はどんなものか
19 データ分析する環境について • BigQueryのdataViewer権限を持っている人であれば、自由にデータを使っ た分析が行える • クエリで完結するようなシンプルな分析であればBigQueryを使うことが多い • 一方でRやPythonを使って高度な分析を行いたい場合もある BigQueryとNotebookの2つの環境
20 データ分析する環境について • AI Platform Notebooks = Google Cloud Platformのマネージド型の
JupyterLab ノートブック インスタンス • BigQueryへのアクセスが可能 • ローカルマシンでの分析も可能ではあるが、チームの共通の分析環境を設ける ことで、分析作業の属人化を防ぐ • 分析の過程や考えをそのままシェアできるのもGood 高度な分析環境としてのAI Platform Notebooks
21 データを可視化するツール Looker CloudSQL BigQuery
22 Looker
23 まとめ • データ計測: FE/BEでのロギングの仕組み • データ収集: CloudSQLからBigQueryに集めるpipeline • 分析環境:
BigQuery, AI Platform Notebooks • 可視化: Looker, AI Platform Notebook 利用しているツール・仕組み
24 ありがとうございました