Upgrade to Pro — share decks privately, control downloads, hide ads and more …

CSの生産性改善を支える分析環境 Mercari CS/CRE Tech Talk #1

ukitaka
July 04, 2021

CSの生産性改善を支える分析環境 Mercari CS/CRE Tech Talk #1

ukitaka

July 04, 2021
Tweet

More Decks by ukitaka

Other Decks in Technology

Transcript

  1. 6 生産性を図るための指標の1つ: AHT • AHT = 1件のお問い合わせの対応にかかる平均時間 • ものすごく単純化すると、すべてのお問い合わせに返信するためには、 お問い

    合わせ数 × AHT 秒分の時間が必要になる • これに応じて必要人員が計算され、その人数に応じたコストがかかってくる構造 AHT (Average Handling Time)
  2. 15 HTを計測するためのログの仕組み • Backendでのログ ◦ アクションしたログが確実に存在するが、APIが叩かれる単位でしかログが 取れない • Frontendでのログ ◦

    細かい操作のログまで取れるが、欠損・遅延も起こる ◦ クライアントPCの時刻設定に依存してしまう • 基本はBackendのログを使いつつ、詳細な分析が必要な場合にはFrontend のログを組み合わせて使う Frontend/Backendそれぞれでログの仕組み(自作) を持つ
  3. 16 参考: なぜGoogle AnalyticsやDatadog UX Monitoring を活用しないか? • Google AnalyticsやDatadog

    User Monitoringなど、代替となるツールは いくつかある • しかし個人情報を扱う業務の性質上、セキュリティ的なリスクや、そもそも外部に アクセスできないなどのシステム的な制約があった • 結果として自作することになった
  4. 20 データ分析する環境について • AI Platform Notebooks = Google Cloud Platformのマネージド型の

    JupyterLab ノートブック インスタンス • BigQueryへのアクセスが可能 • ローカルマシンでの分析も可能ではあるが、チームの共通の分析環境を設ける ことで、分析作業の属人化を防ぐ • 分析の過程や考えをそのままシェアできるのもGood 高度な分析環境としてのAI Platform Notebooks
  5. 23 まとめ • データ計測: FE/BEでのロギングの仕組み • データ収集: CloudSQLからBigQueryに集めるpipeline • 分析環境:

    BigQuery, AI Platform Notebooks • 可視化: Looker, AI Platform Notebook 利用しているツール・仕組み