Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
statistician_ja_lt5.pdf
Search
Takayuki Uchiba
November 15, 2020
Science
0
670
statistician_ja_lt5.pdf
一様最小分散不偏推定量が存在しない例を紹介しました。
Takayuki Uchiba
November 15, 2020
Tweet
Share
More Decks by Takayuki Uchiba
See All by Takayuki Uchiba
縮小推定のはなし.pdf
utaka233
1
2.4k
高次元データに対するL1正則化の有効性
utaka233
1
3.1k
Other Decks in Science
See All in Science
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
170
データマイニング - グラフデータと経路
trycycle
PRO
1
130
データベース02: データベースの概念
trycycle
PRO
2
750
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.8k
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
940
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
480
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
910
Lean4による汎化誤差評価の形式化
milano0017
1
220
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
480
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
140
機械学習 - 授業概要
trycycle
PRO
0
190
CV_5_3dVision
hachama
0
140
Featured
See All Featured
Faster Mobile Websites
deanohume
307
31k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Typedesign – Prime Four
hannesfritz
42
2.7k
Six Lessons from altMBA
skipperchong
28
3.8k
Navigating Team Friction
lara
187
15k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Transcript
Ұ༷࠷খࢄෆภਪఆྔඞͣଘࡏ͢Δ͔ʁ !VUBLB
Ұ༷࠷খࢄෆภਪఆྔ ͷҰ༷࠷খࢄෆภਪఆྔʢ6.76&ʣɹ ෆภੑ ͕ͲΜͳͰ͋ͬͯɺ ͕Γཱͭɻ Ұ༷࠷খࢄੑ ͕ͲΜͳͰ͋ͬͯɺଞͷෆภਪఆྔ
ʹൺͯ ͷࢄ͕খ͍͞ɻཁ͢Δʹɺ ͕Γཱͭɻ ྫαΠζ ͷಠཱඪຊΛظ ࢄ ͷਖ਼ن͔Βಘͨ߹ ɾظ ͷ6.76&ඪຊฏۉ ɾࢄ ͷ6.76&ෆภࢄ T θ θ [T] = θ θ S T [T] ≤ [S] n μ σ2 μ σ2
6.76&ͷѻ͍͢͞ʢͦͷʣ $SBNFS3BPͷఆཧ͋Δෆภਪఆྔ͕6.76&͔ఆ͢Δํ๏ͷͻͱͭ ɾෆภਪఆྔͷࢄͷେ͖͞ͷԼݶܭࢉͰ͖Δɻ ɹɾ$SBNFS3BPԼݶ'JTIFSใྔ ɾෆภਪఆྔ ͷࢄ͕͜ͷԼݶʹҰக͢Ε6.76& ʢʣ6.76&ͷࢄ͕ඞͣ͜ͷԼݶʹͳΔΘ͚Ͱͳ͍ɻ T
6.76&ͷѻ͍͢͞ʢͦͷʣ -FINBOO4DIF⒎Fͷఆཧ6.76&ಛఆͷ݅ͷͱͰ࡞ΕΔɻ ɾಛఆͷ݅උे౷ܭྔͷଘࡏ ɾඋे౷ܭྔͰද͞ΕΔ౷ܭྔ͕ෆภͳΒ6.76& ɾ$SBNFS3BPͷఆཧ͕༗ޮͰͳ͍έʔεͰಛʹศར ɹɾ'JTIFSใྔ͕ఆٛͰ͖ͳ͍ͱ͖ʢҰ༷ͷ࠷େύϥϝʔλʣ ɹɾ6.76&ͷࢄ㱠$SBNFS3BPԼݶͷͱ͖
6.76&ඞͣଘࡏ͢Δ͔ʁ ύϥϝʔλ ͷ6.76&ඞͣଘࡏ͢Δ͔ʁ ɾ-FINBOO4DIF⒎Fͷఆཧඋे౷ܭྔ͕ଘࡏ͢Ε6.76&࡞ΕΔɻ ɾඋे౷ܭྔ͕ଘࡏ͠ͳ͚ΕͲ͏͔ʁ ɾ)JOUҰ༷࠷খࢄੑʹݱΕΔʮ ͕ͲΜͳͰ͋ͬͯʯڧ͍݅ ˠɹ ͷ͝ͱʹ࠷খࢄͷෆภਪఆྔ͕ҟͳΕɺ6.76&ଘࡏ͠ͳ͍ɻ θ
θ θ
۩ମྫͷߏ ֬ม ͕࣍ͷ࣭֬ྔؔ ʹै͍ͬͯΔͷͱ͠·͢ɻύϥϝʔλ ͷҰ༷࠷খࢄෆภਪఆྔଘࡏ͢Δ͔ʁ ٕज़తͳ3FNBSL Ͱද͞ΕΔͲΜͳ౷ܭྔɺ ͷܗͰද͢͜ͱ͕Ͱ͖Δɻ X
f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ p X T(X) = ∞ ∑ x=−1 tx [X = x]
ෆภਪఆྔʹͳΔͨΊͷ݅ Λ༻͍ͯɺ౷ܭྔ ͷظΛܭࢉ͢Δɻ ౷ܭྔ ͕ෆภਪఆྔͳΒɺظඞͣ ʹ͘͠ͳΔɻ ˠɹԽࣜ GPS
ˠɹ ͷܗͰද͞ΕΔ౷ܭྔ ͕ෆภਪఆྔʹͳΔɻ f(x) = { p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = t−1 p + ∞ ∑ x=0 tx (1 − p)2px = t0 + ∞ ∑ x=1 (tx−2 − 2tx−1 + tx )px T(X) p tx − 2tx−1 + tx−2 = 0 x ≥ 2 t1 = 1 − t−1 t0 = 0 tx = x(1 − t−1 ) T(X)
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Λ༻͍ͯɺෆภਪఆྔ ͷࢄΛܭࢉ͢Δɻ ͜͏͍͏ͱ͖ʹཱͭͷࢄͷެࣜʂ ͳͷͰɺ Λܭࢉ͠Α͏ɻ f(x) = {
p JGx = − 1 (1 − p)2px JGx = 0,1,2,⋯ T(X) [T] = [T2] − [T]2 = [T2] − p2, ෆภੑ [T2]
ෆภਪఆྔͷࢄΛܭࢉ͢Δʢͦͷʣ Ώ͑ʹɺ ͷࢄ ͱΘ͔Γ·͢ɻ [T2] = t2 −1 p
+ ∞ ∑ x=1 x2(1 − t−1 )2(1 − p)2px = t−1 + (1 − t−1 )2(1 − p)2 ∞ ∑ x=1 x2px = t2 −1 p + (1 − t−1 )2(1 − p)2 p(1 + p) (1 − p)3 = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p T(X) [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ࠷খࢄΛ༩͑Δ ʢΛ༩͑Δ ʣΛٻΊɺ ʹґଘͳΒ6.76&ଘࡏ͠ͳ͍ɻ Λ Ͱཧ͢Δͱɺ͕࣍ؔݱΕΔɻ ฏํͯ͠ɺ࠷খΛ༩͑Δ ΛٻΊͯΈΑ͏ʂ
T(X) t−1 p [T] = t2 −1 p + (1 − t−1 )2 p(1 + p) 1 − p − p2 t−1 [T] = (p + p(1 + p) 1 − p ) t2 −1 − 2 p(1 + p) 1 − p t−1 + ( p(1 + p) 1 − p − p2 ) t−1
ࢄ͕࠷খΛͱΔͨΊͷ݅ʢͦͷʣ ฏํ͢Δͱɺ࣍ͷΑ͏ʹͳΓ·͢ɻ ࣍ؔͷͷ࠲ඪΛಡΉ͜ͱͰɺ ͷͱ͖ࢄ࠷খͱΘ͔Γ·͢ɻ [T] = (p + p(1
+ p) 1 − p ) t−1 − 1 1 + 1 − p 1 + p 2 + const . = (p + p(1 + p) 1 − p ) {t−1 − p + 1 2 } 2 + const . t−1 = p + 1 2
݁ ࢄ͕࠷খʹͳΔෆภਪఆྔ͕ύϥϝʔλ ͷʹґଘ͍ͯ͠Δɻ ˠɹ ͷ6.76&ଘࡏ͠ͳ͍ʂʂʂʂʂ ͜ͷྫ͕ڭ͑ͯ͘Ε͍ͯΔͱࢥ͏͜ͱʢࢲײʣ ɾඞͣ͠ʮ͍ͭͰ҆ఆͯ͠ਫ਼͕ྑ͍ਪఆྔʯ͕ଘࡏ͢ΔͱݶΒͳ͍ɻ ɾԾઆ͕͋ΔͳΒਪఆྔʹөͤͯ͞ΈΔͷେࣄɻ ɹɾࠓճͷྫͰɺ ͷʹԠͨ͡ਪఆྔͷબͷ༨͞Ε͍ͯΔɻ
ɹɾDMJDLখ͘͞ͳΓ͕͔ͪͩΒɺͪΐͬͱॖখͨ͠ͷΛ͓͏ͱ͔ɻ p p p
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ ࣗݾհͰͬͱ͖·͢ɻɻɻ ɾ!VUBLB ɾגࣜձࣾ͢͏͕͘ͿΜ͔ ڭ෦ ෦ ɾڵຯཧ౷ܭֶͷσʔλϚΠχϯάͷԠ༻ زԿֶ ɾจ ɹओஶ(MVJOH4UBCJMJUZ$POEJUJPOTPO3VMFE4VSGBDFXJUI1PTJUJWF(FOVT
ɹɹɹɹ0TBLB+PVSOBMPG.BUIFNBUJDT BDDFQUFE ɹڞஶࠓຊɺ͍ͣΕػցֶशͷจɻ