Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
Search
wakama1994
June 21, 2022
Programming
0
220
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
ウェザーニューズ社内のML技術情報共有会
wakama1994
June 21, 2022
Tweet
Share
More Decks by wakama1994
See All by wakama1994
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.8k
「実践DataOps」書籍紹介
wakamatsu_takumu
0
20
Kaggleの歩き方-関西Kaggler会に参加してみて-
wakamatsu_takumu
2
600
BQで天気基盤をつくって、役立つ情報を可視化してみた!
wakamatsu_takumu
4
1.2k
「データモデリング実践入門」は20年経っても色あせない
wakamatsu_takumu
4
1.3k
いろんな可視化ツールあるけどggplotて何がいいの?- 複数ツールで比較してみた!-
wakamatsu_takumu
1
1.6k
文系出身でも「アルゴリズム×数学」はスッキリ理解できた!話
wakamatsu_takumu
0
600
ChatGPTにどんなときRを使えばいいか聞いてみた!
wakamatsu_takumu
0
720
A/Bテスト実践ガイド ~真のデータドリブンへ至る信用できる実験とは~
wakamatsu_takumu
1
1.6k
Other Decks in Programming
See All in Programming
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
200
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
0
510
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
170
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
270
SQL Server 2025 LT
odashinsuke
0
160
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
230
ゆくKotlin くるRust
exoego
1
200
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
5.3k
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
440
Grafana:建立系統全知視角的捷徑
blueswen
0
280
Vibe codingでおすすめの言語と開発手法
uyuki234
0
180
CSC307 Lecture 02
javiergs
PRO
1
760
Featured
See All Featured
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
360
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
100
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
890
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
360
BBQ
matthewcrist
89
10k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Making Projects Easy
brettharned
120
6.5k
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて Machine learning 技術情報共有会 Takumu Wakamatsu Date 2022.06.21
取り組んだ理由 最近仕事でGoogle Data portalを活用した案件を担当 ➢ Data portalとの連携上、Google Big Queryを活用する機会も増えた ➢
pythonに比べ使いやすいケースも結構ある ➢ その一方、複雑な処理になると、コーディングが難しい • SQLの練習ができつつも、その他の言語との比較をして、適切なタイミング でBig Queryを使えるようになりたい!
本書に関して 2020年にデータサイエンティスト協会 が、GitHub上に公開 2022年の1月にソシム社から「データサ イエンス100本ノック構造化データ加工編ガイ ドブックが発売され、こちらを購入し て、実施中 https://digitalpr.jp/r/39499
構成と進捗 https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/docker/doc/100knocks_guide.pdf 6/12(日)から初めて、1〜40まで実施(No7の途中まで、疲れてできない日もあり) →SQLのみで実施(解答見るときに、pythonコードもたまにみてる)
構築したい方は以下で https://github.com/The-Japan-DataScientist-Society/100knocks -preprocess/blob/master/docker/doc/100knocks_guide.pdf
実際やってみて
感想 • 基礎統計量(最大、平均とか)をサクッと出す分には、SQLの方が書きやすい • 一方、複雑な結合とかに当たると、SQLの場合サブクエリが長くなったり、連 携がやりにくかったりするので、記述量が多くなるので、python(で実装され ているpandasの処理)の方が良さげ • 趣味程度にやる分だと、楽しい •
Dockerの環境に触れられるので、知見が広がった
SQLが楽な場合 SQL python S-024: レシート明細データ(receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。
SQLが面倒な場合 SQL python P-038: 顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない 顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から 始まるもの)は除外すること。
今後に関して 本書に関して • 6月末を目処に、SQLに関して、100問全てやり切るのを目標 • 実務で使える場面も多いので、サンプルコードで蓄積しておきたい(特に基 礎統計量のあたりとかは) • 暇なので、オラクルのSQLがらみの検定とかは受けてみたい(ただし、お金が高 い)
実務で使いたい方(参考) データベースの構築は厳しいと思うので、 Google Big Queryが個人的にはオススメ • csvがローカルからのアップロードが可能 な他、S3やドライブからもアップロード 可能 •
社内だと、csvデータの処理が現状多いで すが、サクッとデータ切り出したい時は pythonよりは楽(と思う) ◦ ただしカラム表記が日本語対応していないの が、欠点 uery-create-table-by-local-file-upload/