Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
Search
wakama1994
June 21, 2022
Programming
0
150
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
社内のML技術情報共有会
wakama1994
June 21, 2022
Tweet
Share
More Decks by wakama1994
See All by wakama1994
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
290
Kaggleの歩き方-関西Kaggler会に参加してみて-
wakamatsu_takumu
2
500
BQで天気基盤をつくって、役立つ情報を可視化してみた!
wakamatsu_takumu
4
1.1k
「データモデリング実践入門」は20年経っても色あせない
wakamatsu_takumu
3
1k
いろんな可視化ツールあるけどggplotて何がいいの?- 複数ツールで比較してみた!-
wakamatsu_takumu
1
1.4k
文系出身でも「アルゴリズム×数学」はスッキリ理解できた!話
wakamatsu_takumu
0
500
ChatGPTにどんなときRを使えばいいか聞いてみた!
wakamatsu_takumu
0
690
A/Bテスト実践ガイド ~真のデータドリブンへ至る信用できる実験とは~
wakamatsu_takumu
1
1.3k
EBImageを用いたVR画像の変化域抽出と生態系への活用.pdf
wakamatsu_takumu
0
370
Other Decks in Programming
See All in Programming
AIともっと楽するE2Eテスト
myohei
7
2.8k
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
92
31k
状態遷移図を書こう / Sequence Chart vs State Diagram
orgachem
PRO
1
130
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
590
XP, Testing and ninja testing
m_seki
3
250
イベントストーミング図からコードへの変換手順 / Procedure for Converting Event Storming Diagrams to Code
nrslib
2
860
GPUを計算資源として使おう!
primenumber
1
160
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
170
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
13
4.8k
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
270
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
150
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
180
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
54
11k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
RailsConf 2023
tenderlove
30
1.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Optimizing for Happiness
mojombo
379
70k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Facilitating Awesome Meetings
lara
54
6.4k
Producing Creativity
orderedlist
PRO
346
40k
Transcript
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて Machine learning 技術情報共有会 Takumu Wakamatsu Date 2022.06.21
取り組んだ理由 最近仕事でGoogle Data portalを活用した案件を担当 ➢ Data portalとの連携上、Google Big Queryを活用する機会も増えた ➢
pythonに比べ使いやすいケースも結構ある ➢ その一方、複雑な処理になると、コーディングが難しい • SQLの練習ができつつも、その他の言語との比較をして、適切なタイミング でBig Queryを使えるようになりたい!
本書に関して 2020年にデータサイエンティスト協会 が、GitHub上に公開 2022年の1月にソシム社から「データサ イエンス100本ノック構造化データ加工編ガイ ドブックが発売され、こちらを購入し て、実施中 https://digitalpr.jp/r/39499
構成と進捗 https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/docker/doc/100knocks_guide.pdf 6/12(日)から初めて、1〜40まで実施(No7の途中まで、疲れてできない日もあり) →SQLのみで実施(解答見るときに、pythonコードもたまにみてる)
構築したい方は以下で https://github.com/The-Japan-DataScientist-Society/100knocks -preprocess/blob/master/docker/doc/100knocks_guide.pdf
実際やってみて
感想 • 基礎統計量(最大、平均とか)をサクッと出す分には、SQLの方が書きやすい • 一方、複雑な結合とかに当たると、SQLの場合サブクエリが長くなったり、連 携がやりにくかったりするので、記述量が多くなるので、python(で実装され ているpandasの処理)の方が良さげ • 趣味程度にやる分だと、楽しい •
Dockerの環境に触れられるので、知見が広がった
SQLが楽な場合 SQL python S-024: レシート明細データ(receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。
SQLが面倒な場合 SQL python P-038: 顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない 顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から 始まるもの)は除外すること。
今後に関して 本書に関して • 6月末を目処に、SQLに関して、100問全てやり切るのを目標 • 実務で使える場面も多いので、サンプルコードで蓄積しておきたい(特に基 礎統計量のあたりとかは) • 暇なので、オラクルのSQLがらみの検定とかは受けてみたい(ただし、お金が高 い)
実務で使いたい方(参考) データベースの構築は厳しいと思うので、 Google Big Queryが個人的にはオススメ • csvがローカルからのアップロードが可能 な他、S3やドライブからもアップロード 可能 •
社内だと、csvデータの処理が現状多いで すが、サクッとデータ切り出したい時は pythonよりは楽(と思う) ◦ ただしカラム表記が日本語対応していないの が、欠点 uery-create-table-by-local-file-upload/