Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
Search
wakama1994
June 21, 2022
Programming
0
150
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
社内のML技術情報共有会
wakama1994
June 21, 2022
Tweet
Share
More Decks by wakama1994
See All by wakama1994
Kaggleの歩き方-関西Kaggler会に参加してみて-
wakamatsu_takumu
2
490
BQで天気基盤をつくって、役立つ情報を可視化してみた!
wakamatsu_takumu
4
1.1k
「データモデリング実践入門」は20年経っても色あせない
wakamatsu_takumu
3
990
いろんな可視化ツールあるけどggplotて何がいいの?- 複数ツールで比較してみた!-
wakamatsu_takumu
1
1.4k
文系出身でも「アルゴリズム×数学」はスッキリ理解できた!話
wakamatsu_takumu
0
500
ChatGPTにどんなときRを使えばいいか聞いてみた!
wakamatsu_takumu
0
680
A/Bテスト実践ガイド ~真のデータドリブンへ至る信用できる実験とは~
wakamatsu_takumu
1
1.3k
EBImageを用いたVR画像の変化域抽出と生態系への活用.pdf
wakamatsu_takumu
0
370
Other Decks in Programming
See All in Programming
Select API from Kotlin Coroutine
jmatsu
1
170
関数型まつりレポート for JuliaTokai #22
antimon2
0
120
GoのGenericsによるslice操作との付き合い方
syumai
2
650
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
0
300
GoのWebAssembly活用パターン紹介
syumai
3
10k
Gleamという選択肢
comamoca
6
740
実践ArchUnit ~実例による検証パターンの紹介~
ogiwarat
2
270
A comprehensive view of refactoring
marabesi
0
790
DroidKnights 2025 - 다양한 스크롤 뷰에서의 영상 재생
gaeun5744
3
290
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
1
780
「ElixirでIoT!!」のこれまでとこれから
takasehideki
0
360
機械学習って何? 5分で解説頑張ってみる
kuroneko2828
0
210
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Git: the NoSQL Database
bkeepers
PRO
430
65k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.8k
Thoughts on Productivity
jonyablonski
69
4.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Automating Front-end Workflow
addyosmani
1370
200k
Code Reviewing Like a Champion
maltzj
524
40k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Transcript
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて Machine learning 技術情報共有会 Takumu Wakamatsu Date 2022.06.21
取り組んだ理由 最近仕事でGoogle Data portalを活用した案件を担当 ➢ Data portalとの連携上、Google Big Queryを活用する機会も増えた ➢
pythonに比べ使いやすいケースも結構ある ➢ その一方、複雑な処理になると、コーディングが難しい • SQLの練習ができつつも、その他の言語との比較をして、適切なタイミング でBig Queryを使えるようになりたい!
本書に関して 2020年にデータサイエンティスト協会 が、GitHub上に公開 2022年の1月にソシム社から「データサ イエンス100本ノック構造化データ加工編ガイ ドブックが発売され、こちらを購入し て、実施中 https://digitalpr.jp/r/39499
構成と進捗 https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/docker/doc/100knocks_guide.pdf 6/12(日)から初めて、1〜40まで実施(No7の途中まで、疲れてできない日もあり) →SQLのみで実施(解答見るときに、pythonコードもたまにみてる)
構築したい方は以下で https://github.com/The-Japan-DataScientist-Society/100knocks -preprocess/blob/master/docker/doc/100knocks_guide.pdf
実際やってみて
感想 • 基礎統計量(最大、平均とか)をサクッと出す分には、SQLの方が書きやすい • 一方、複雑な結合とかに当たると、SQLの場合サブクエリが長くなったり、連 携がやりにくかったりするので、記述量が多くなるので、python(で実装され ているpandasの処理)の方が良さげ • 趣味程度にやる分だと、楽しい •
Dockerの環境に触れられるので、知見が広がった
SQLが楽な場合 SQL python S-024: レシート明細データ(receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。
SQLが面倒な場合 SQL python P-038: 顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない 顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から 始まるもの)は除外すること。
今後に関して 本書に関して • 6月末を目処に、SQLに関して、100問全てやり切るのを目標 • 実務で使える場面も多いので、サンプルコードで蓄積しておきたい(特に基 礎統計量のあたりとかは) • 暇なので、オラクルのSQLがらみの検定とかは受けてみたい(ただし、お金が高 い)
実務で使いたい方(参考) データベースの構築は厳しいと思うので、 Google Big Queryが個人的にはオススメ • csvがローカルからのアップロードが可能 な他、S3やドライブからもアップロード 可能 •
社内だと、csvデータの処理が現状多いで すが、サクッとデータ切り出したい時は pythonよりは楽(と思う) ◦ ただしカラム表記が日本語対応していないの が、欠点 uery-create-table-by-local-file-upload/