Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
Search
wakama1994
June 21, 2022
Programming
0
160
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて
社内のML技術情報共有会
wakama1994
June 21, 2022
Tweet
Share
More Decks by wakama1994
See All by wakama1994
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
880
Kaggleの歩き方-関西Kaggler会に参加してみて-
wakamatsu_takumu
2
510
BQで天気基盤をつくって、役立つ情報を可視化してみた!
wakamatsu_takumu
4
1.1k
「データモデリング実践入門」は20年経っても色あせない
wakamatsu_takumu
3
1k
いろんな可視化ツールあるけどggplotて何がいいの?- 複数ツールで比較してみた!-
wakamatsu_takumu
1
1.4k
文系出身でも「アルゴリズム×数学」はスッキリ理解できた!話
wakamatsu_takumu
0
520
ChatGPTにどんなときRを使えばいいか聞いてみた!
wakamatsu_takumu
0
690
A/Bテスト実践ガイド ~真のデータドリブンへ至る信用できる実験とは~
wakamatsu_takumu
1
1.4k
EBImageを用いたVR画像の変化域抽出と生態系への活用.pdf
wakamatsu_takumu
0
380
Other Decks in Programming
See All in Programming
プロダクトという一杯を作る - プロダクトチームが味の責任を持つまでの煮込み奮闘記
hiliteeternal
0
300
TypeScriptでDXを上げろ! Hono編
yusukebe
3
880
DataformでPythonする / dataform-de-python
snhryt
0
100
MCP連携で加速するAI駆動開発/mcp integration accelerates ai-driven-development
bpstudy
0
180
MCPを使ってイベントソーシングのAIコーディングを効率化する / Streamlining Event Sourcing AI Coding with MCP
tomohisa
0
190
可変性を制する設計: 構造と振る舞いから考える概念モデリングとその実装
a_suenami
8
1k
202507_ADKで始めるエージェント開発の基本 〜デモを通じて紹介〜(奥田りさ)The Basics of Agent Development with ADK — A Demo-Focused Introduction
risatube
PRO
5
1.3k
ソフトウェア設計とAI技術の活用
masuda220
PRO
25
7k
Vibe coding コードレビュー
kinopeee
0
310
The Modern View Layer Rails Deserves: A Vision For 2025 And Beyond @ RailsConf 2025, Philadelphia, PA
marcoroth
2
830
#QiitaBash TDDで(自分の)開発がどう変わったか
ryosukedtomita
1
170
AIのメモリー
watany
11
1.1k
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.7k
Designing for Performance
lara
610
69k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
530
Producing Creativity
orderedlist
PRO
346
40k
Building Adaptive Systems
keathley
43
2.7k
Fireside Chat
paigeccino
37
3.5k
Code Reviewing Like a Champion
maltzj
524
40k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
How STYLIGHT went responsive
nonsquared
100
5.7k
GitHub's CSS Performance
jonrohan
1031
460k
KATA
mclloyd
31
14k
Transcript
データサイエンス100本ノック(構造化データ加工編) No1~40までをSQLで書いてみて Machine learning 技術情報共有会 Takumu Wakamatsu Date 2022.06.21
取り組んだ理由 最近仕事でGoogle Data portalを活用した案件を担当 ➢ Data portalとの連携上、Google Big Queryを活用する機会も増えた ➢
pythonに比べ使いやすいケースも結構ある ➢ その一方、複雑な処理になると、コーディングが難しい • SQLの練習ができつつも、その他の言語との比較をして、適切なタイミング でBig Queryを使えるようになりたい!
本書に関して 2020年にデータサイエンティスト協会 が、GitHub上に公開 2022年の1月にソシム社から「データサ イエンス100本ノック構造化データ加工編ガイ ドブックが発売され、こちらを購入し て、実施中 https://digitalpr.jp/r/39499
構成と進捗 https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess/blob/master/docker/doc/100knocks_guide.pdf 6/12(日)から初めて、1〜40まで実施(No7の途中まで、疲れてできない日もあり) →SQLのみで実施(解答見るときに、pythonコードもたまにみてる)
構築したい方は以下で https://github.com/The-Japan-DataScientist-Society/100knocks -preprocess/blob/master/docker/doc/100knocks_guide.pdf
実際やってみて
感想 • 基礎統計量(最大、平均とか)をサクッと出す分には、SQLの方が書きやすい • 一方、複雑な結合とかに当たると、SQLの場合サブクエリが長くなったり、連 携がやりにくかったりするので、記述量が多くなるので、python(で実装され ているpandasの処理)の方が良さげ • 趣味程度にやる分だと、楽しい •
Dockerの環境に触れられるので、知見が広がった
SQLが楽な場合 SQL python S-024: レシート明細データ(receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。
SQLが面倒な場合 SQL python P-038: 顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない 顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から 始まるもの)は除外すること。
今後に関して 本書に関して • 6月末を目処に、SQLに関して、100問全てやり切るのを目標 • 実務で使える場面も多いので、サンプルコードで蓄積しておきたい(特に基 礎統計量のあたりとかは) • 暇なので、オラクルのSQLがらみの検定とかは受けてみたい(ただし、お金が高 い)
実務で使いたい方(参考) データベースの構築は厳しいと思うので、 Google Big Queryが個人的にはオススメ • csvがローカルからのアップロードが可能 な他、S3やドライブからもアップロード 可能 •
社内だと、csvデータの処理が現状多いで すが、サクッとデータ切り出したい時は pythonよりは楽(と思う) ◦ ただしカラム表記が日本語対応していないの が、欠点 uery-create-table-by-local-file-upload/