Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告ログのリアルタイム集計とその活用 / Realtime Ad log aggregati...
Search
wata
July 28, 2017
Technology
2
6.8k
広告ログのリアルタイム集計とその活用 / Realtime Ad log aggregation and utilization
Cookpad Tech Kitchen #9
https://cookpad.connpass.com/event/60831/
wata
July 28, 2017
Tweet
Share
More Decks by wata
See All by wata
クックパッド動画事業開発のチャレンジ / CookpadTV challenge
wata
1
2.2k
クックパッドの動画事業での AWS AppSync 活用事例 / Practical use of AWS AppSync by Cookpad
wata
17
11k
Other Decks in Technology
See All in Technology
20250326_管理ツールの権限管理で改善したこと
sasata299
1
390
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
20k
20250328_OpenAI製DeepResearchは既に一種のAGIだと思う話
doradora09
PRO
0
150
モンテカルロ木探索のパフォーマンスを予測する Kaggleコンペ解説 〜生成AIによる未知のゲーム生成〜
rist
4
1.1k
AIエージェントキャッチアップと論文リサーチ
os1ma
6
1.2k
アプリケーション固有の「ロジックの脆弱性」を防ぐ開発者のためのセキュリティ観点
flatt_security
33
12k
移行できそうでやりきれなかった 10年超えのシステムを葬るための戦略
ryu955
2
520
パスキー導入の課題と ベストプラクティス、今後の展望
ritou
7
1.2k
ソフトウェアプロジェクトの成功率が上がらない原因-「社会価値を考える」ということ-
ytanaka5569
0
130
Vision Language Modelを活用した メルカリの類似画像レコメンドの性能改善
yadayuki
9
1.3k
サーバシステムを無理なくコンテナ移行する際に伝えたい4つのポイント/Container_Happy_Migration_Method
ozawa
1
100
ISUCONにPHPで挑み続けてできるようになっ(てき)たこと / phperkaigi2025
blue_goheimochi
0
140
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.5k
A better future with KSS
kneath
238
17k
Documentation Writing (for coders)
carmenintech
69
4.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Bash Introduction
62gerente
611
210k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
12
1.4k
Into the Great Unknown - MozCon
thekraken
36
1.7k
Visualization
eitanlees
146
16k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Transcript
ࠂϩάͷϦΞϧλΠϜूܭͱ ͦͷ׆༻ 2017-07-26 Cookpad Tech Kitchen #9 wata
自己紹介 • 渡辺 慎也 • マーケティングプロダクト開発部 • 広告配信基盤周りの整備、開発保守 • やりたいこと
• Rails でアプリを書くよりコンテンツ配信に関わ る、ミドルウェア、インフラ、プロトコルのアー キテクチャを考えることや、改善、安定運用
Agenda • サービス規模 • アーキテクチャ ‣ 以前 ‣ Lambda Architecture
‣ 変更後 • 活用方法について
サービス規模 • インスタンス • c3.xlarge, c4.xlarge で構成 • 5 〜
18 台(Auto Scaling) • ピーク時同時リクエスト数 • 2,000 req/s 以上 ※2017年7月現在
アーキテクチャ
アーキテクチャ HTML レンダリング時に JavaScript で広告配信サーバに リクエストを投げて表示する。 配信 サーバ impression log
click log 302 redirect JSON Ajax
アーキテクチャ reverse proxy app mysql memcached fluentd queue Amazon
Redshift #SJDPMBHF 4USFBNJOH-PBE backup batch %8) Amazon DynamoDB
アーキテクチャ reverse proxy app mysql memcached fluentd queue Amazon
Redshift #SJDPMBHF 4USFBNJOH-PBE backup batch %8) Amazon DynamoDB ログデータがバッチ集計終わって mysql に入るまでに 1 時間ぐらいのラグがあった
もっと早くログが出ているか 確認したい!
そこで
Lambda Architecture
Lambda Architecture 出典元:http://lambda-architecture.net/
Lambda Architecture 出典元:http://lambda-architecture.net/ 既存のバッチ処理集計がここにあたる
Lambda Architecture 出典元:http://lambda-architecture.net/ それに speed layer を追加
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon DynamoDB reverse proxy
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon DynamoDB reverse proxy ここに
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon Kinesis Streams Lambda function Amazon DynamoDB speed layer Amazon DynamoDB reverse proxy
アーキテクチャ app mysql memcached fluentd queue Amazon Redshift #SJDPMBHF
4USFBNJOH-PBE backup batch DWH Amazon Kinesis Streams Lambda function Amazon DynamoDB speed layer Amazon DynamoDB reverse proxy speed layer を追加
None
Kinesis Streams から Lambda で DynamoDB に書き込む
DynamoDB Streams で 次の Lambda を起動させ 1 時間単位、1 日単位で集計 (処理的には
ADD)
日単位の集計は 1 時間単位で集計した データを利用
950 executions/min 75 〜 125ms 225 executions/min 190 〜 425ms
2900 executions/min 0.2 〜 1.0s
活用方法について
活用方法について • 集計データの確認方法 ‣ batch layer の集計データは mysql を参照 ‣
speed layer の集計データは DynamoDB を参照 • 使い分け ‣ batch layer はレポーティング等の正式なデータと して利用 ‣ speed layer はあくまでも速報値や確認の為に利用
活用方法について • 異常検知(耐障害性) • ログの流量変化によって異常検知 • 配信制御 • 直近のデータを考慮して、高精度で制御 •
在庫予測 • 直近のデータを考慮して、予測値を最適化
異常検知(耐障害性) • layer で突き合わせをしてズレを検知 ‣ batch layer の集計と、speed layer の集計を突
き合わせて、大きなズレがある場合は異常とし てエンジニアに通知する • 冗長化 ‣ 別の集計方法(完全に別ではないが)をするこ とで、DynamoDB または Redshift が落ちてい ても完全にログ集計が止まることはない
配信制御 • インプレッションの出し方が単純には いかない商品がある • 例えば 500 インプレッションを 1 週
間で出す場合はなるべく平準化する必 要がある
配信制御
配信制御
これでは駄目で
配信制御
配信制御
平準化する
配信制御 • 出しすぎてもいけないし、期間で平準 化する必要がある
在庫予測 • 在庫が余った場合に、別の商品を掲出 させたいことがある。 • その場合に人手で配信設定をせずとも 直近のデータに基いて掲出量を変更す る。
まとめ • batch layer だけでなく speed layer も導入、活用することで ‣ 掲出確認が迅速に行えるようになった
‣ 在庫の無駄を減らすことが出来る ‣ 2 layer で集計することで、異常検知可 能
ຖͷྉཧΛָ͠Έʹ 5IBOLZPV