Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生物学的同等性試験 検出力の計算法
Search
xjorv
May 03, 2021
Education
0
3.5k
生物学的同等性試験 検出力の計算法
生物学的同等性試験の例数設計では、非心t分布を用いた計算により検出力を計算します。
xjorv
May 03, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.5k
コンパートメントモデルをStanで解く
xjorv
0
440
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.1k
粉体特性2
xjorv
0
2.5k
粉体特性1
xjorv
0
2.8k
皮膜5
xjorv
0
2.3k
皮膜4
xjorv
0
2.2k
皮膜3
xjorv
0
2.2k
皮膜2
xjorv
0
2.2k
Other Decks in Education
See All in Education
令和政経義塾第2期説明会
nxji
0
110
Education-JAWS #3 ~教育現場に、AWSのチカラを~
masakiokuda
0
180
予習動画
takenawa
0
8.7k
Sponsor the Conference | VizChitra 2025
vizchitra
0
560
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
signer
PRO
0
2k
2025年度春学期 統計学 第4回 データを「分布」で見る (2025. 5. 1)
akiraasano
PRO
0
130
Tutorial: Foundations of Blind Source Separation and Its Advances in Spatial Self-Supervised Learning
yoshipon
1
120
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
510
JPCERTから始まる草の根活動~セキュリティ文化醸成のためのアクション~
masakiokuda
0
200
2025年度春学期 統計学 第7回 データの関係を知る(2)ー回帰と決定係数 (2025. 5. 22)
akiraasano
PRO
0
110
データ分析
takenawa
0
8.1k
より良い学振申請書(DC)を作ろう 2025
luiyoshida
1
3.3k
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
980
For a Future-Friendly Web
brad_frost
179
9.8k
Side Projects
sachag
455
42k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Why Our Code Smells
bkeepers
PRO
337
57k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Designing for Performance
lara
610
69k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
GraphQLとの向き合い方2022年版
quramy
49
14k
Building Adaptive Systems
keathley
43
2.7k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Transcript
生物学的同等性試験 検出力の計算法 2020/11/24 Ver. 1.0
信頼区間の計算 試験・標準製剤の平均値の比が0.80-1.25のとき同等 • パラメータが対数正規分布すると仮定する • 90%信頼区間で同等性評価を行う • 有意水準5%の片側検定を2つ行ってもよい 第二の過誤をコントロールするため、例数設計が必要
第一の過誤と第二の過誤 過誤には2種類がある 帰無仮説を 棄却する 棄却しない 実際に 差がある 有意な差 棄却しなかったが 実際には差がある
実際に 差がない 棄却したが 実際には差がない 差があるとは言えない • 青を第一の過誤(偽陽性)と呼ぶ • オレンジを第二の過誤(偽陰性)と呼ぶ
検出力 第二の過誤を除き、有意差を検出できる確率のこと (偽陰性) 𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 検出力は0.8以上が好ましい*とされる *特に理由があるわけではない
power: 検出力、β: 第二の過誤の起こる確率
𝑃𝑜𝑤𝑒𝑟 ∆0 = 𝑃 log 0.8 − ∆0 𝜎2/𝑛 +
𝑡2𝑛−2 0.05 ≤ ∆ − ∆0 𝜎2 𝑛 ≤ log 1.25 − ∆0 𝜎2 𝑛 − 𝑡2𝑛−2 (0.05) 同等性試験における検出力の計算 2つの片側t分布の同時確率から計算する Zパラメータ Zパラメータはt分布するので、確率を計算できる *https://www.jstage.jst.go.jp/article/jscpt1970/31/6/31_6_715/_pdf
例数設計: 検出力(Power)からの計算 t分布の範囲から計算する log 0.8 − ∆0 𝜎2/𝑛 + 𝑡2𝑛−2
0.05 log 1.25 − ∆0 𝜎2 𝑛 − 𝑡2𝑛−2 (0.05) この面積の割合がPower
Rでの計算法 Power_identity(例数、比の平均値、比の標準偏差) で計算可能 正確な計算値とは異なる
正確な検出力の計算方法 非心t分布の同時確率から計算する 非心度 = 0 非心度 = 1 非心度 =
2 非心度 = 3 非心度に従い、t分布は左右にずれる
非心t分布の原因 2x2クロスオーバーでは2つのt検定の同時確率を求める 𝐻0 : 𝜇𝑡 𝜇𝑟 < 𝑙𝑜𝑔 1.25 or
𝜇𝑡 𝜇𝑟 > 𝑙𝑜𝑔 0.8 𝐻1 : 𝑙𝑜𝑔 0.8 < 𝜇𝑡 𝜇𝑟 < 𝑙𝑜𝑔 1.25 H 0 : 帰無仮説、H 1 : 対立仮説、μ t : 試験製剤の値、 μ r : 標準製剤の値 これを満たすための同等性の条件を検証する *http://www.imsbio.co.jp/RGM-files/R_CC/download/PowerTOST/inst/doc/BE_power_sample_size_excerpt.pdf
𝑡1 = 𝑋𝑇 − 𝑋𝑅 − 𝑙𝑜𝑔 0.8 𝑠𝑒 Τ
2 𝑛 ≥ 𝑡 1 − 𝛼, 𝑛 − 2 同等性の条件 𝑡2 = 𝑋𝑇 − 𝑋𝑅 − 𝑙𝑜𝑔 1.25 𝑠𝑒 Τ 2 𝑛 ≤ −𝑡 1 − 𝛼, 𝑛 − 2 以下を同時に満たすことが同等性の条件となる s e : 分散分析の残差平均二条和から計算するパラメータ、t(1-α,n-2): 有意水準1- α、自由度n-2のt分布 𝑋𝑇 、𝑋𝑅 : 対数変換した試験・標準製剤のパラメータ オレンジで囲んだ部分が非心度-log(0.8)、-log(1.25)の 非心t分布を取る
検出力の計算 同等性が確保された上で、以下が検出力となる 𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑟𝑜𝑏 𝑡1 ≥ 𝑡 1 −
𝛼, 𝑛 − 2 ∩ 𝑡2 ≤ 𝑡 1 − 𝛼, 𝑛 − 2 𝐵𝐸 *∩は論理積(A∩BはAかつB)、Prob(A|B)はBの条件を満たした上でAが成り立つ確率 2変量非心t分布は3次元配置になる。検出力は2つの積分値の差(OwenのQ関数)で計算できる これを満たすt 1 、t 2 が二変量非心t分布を取る
2変量非心t分布の積分からの計算法 検出力の計算は以下の式で表される 𝑃𝑜𝑤𝑒𝑟 = 𝑄𝑑𝑓 −𝑡 1−𝛼,𝑑𝑓 , 𝛿2 ;
0, 𝑅 − 𝑄𝑑𝑓 𝑡 1−𝛼,𝑑𝑓 , 𝛿1 ; 0, 𝑅 Q df : 自由度dfのOwenのQ関数(積分計算の関数)、δ: 複雑なので以降のページで示す (基本的にはZパラメータ)、R: 同じく複雑なので以降のページに示す 正直これだけではよくわからない
OwenのQ関数 2変量非心t分布の積分を示す関数 𝑄𝑣 𝑡, 𝛿; 𝑎, 𝑏 = 2𝜋 𝛤
𝑣 2 2൫𝑣−2 Τ 2 න 𝑎 𝑏 𝛷 𝑡 ∙ 𝑥 𝑣 − 𝛿 ∙ 𝑥𝑣−1 ∙ 𝜑 𝑥 ∙ 𝑑𝑥 𝛤: ガンマ関数、Φ、φ: 2変量同時正規分布の確率密度関数 中身を見てもよくわからないが、積分を計算している *RではpowerTOSTパッケージのintegrate関数で計算できるらしい ガンマ関数https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%B3%E3%83%9E%E9%96%A2%E6%95%B0
δとR 𝛿1 = 𝑙𝑜𝑔 𝛩0 − 𝑙𝑜𝑔 0.8 𝑠𝑒 Τ
2 𝑛 𝛿2 = 𝑙𝑜𝑔 𝛩0 − 𝑙𝑜𝑔 1.25 𝑠𝑒 Τ 2 𝑛 𝑅 = 𝑑𝑓 𝛿1 − 𝛿2 2 ∙ 𝑡 1 − 𝛼, 𝑑𝑓 以下の式で計算する 𝛩 0 : パラメータの比の対数、 df: 自由度(被験者数) 上2つはZパラメータの変形、Rは謎パラメータ
簡素化1: 非心t分布での簡素化 Q関数を使う方法は複雑なので、簡素化する 𝑃𝑜𝑤𝑒𝑟 ≈ 𝑝𝑡 −𝑡 1 − 𝛼,
𝑛 − 2 , 𝑛 − 2, 𝛿2 − 𝑝𝑡 𝑡 1 − 𝛼, 𝑛 − 2 , 𝑛 − 2, 𝛿1 pt:(2変量ではない)非心t分布の積分値、 δは非心度 これはRで計算可能
簡素化2: t分布での簡素化 非心t分布はExcelなどでは計算できないので、t分布を使う 𝑃𝑜𝑤𝑒𝑟 ≈ 𝑝𝑡 −𝛿2 − 𝑡 1
− 𝛼, 𝑛 − 2 , 𝑛 − 2, − 𝑝𝑡 𝑡 1 − 𝛼, 𝑛 − 2 − 𝛿1 , 𝑛 − 2, これは5ページの以下の式と同じ 𝑃𝑜𝑤𝑒𝑟 ∆0 = 𝑃 log 0.8 − ∆0 𝜎2/𝑛 + 𝑡2𝑛−2 0.05 ≤ ∆ − ∆0 𝜎2 𝑛 ≤ log 1.25 − ∆0 𝜎2 𝑛 − 𝑡2𝑛−2 (0.05) *上の式では標準製剤+試験製剤のデータ数をn、下では被験者数をnとしているので、実際の自由度は同じ