Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSでRAGを実現する上で感じた3つの大事なこと
Search
y-mae
February 06, 2025
Technology
3
1.8k
AWSでRAGを実現する上で感じた3つの大事なこと
ARI TechSummit ~AI・生成AI~(2025/02/06実施)LT登壇資料
y-mae
February 06, 2025
Tweet
Share
More Decks by y-mae
See All by y-mae
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
260
3/26 クラウド食堂LT #2 GenU案件を通して学んだ教訓 登壇資料
ymae
2
430
「genai-quickstart-pocs」を使ってお手軽に生成AIのPoCを始めよう!
ymae
3
260
生成AIとAWS CDKで実現! 自社ブログレビューの効率化
ymae
4
1.2k
Other Decks in Technology
See All in Technology
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
7
760
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
560
RAG/Agent開発のアップデートまとめ
taka0709
0
190
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
regrowth_tokyo_2025_securityagent
hiashisan
0
260
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
360
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
420
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
160
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
140
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
150
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
170
チーリンについて
hirotomotaguchi
6
2.1k
Featured
See All Featured
Are puppies a ranking factor?
jonoalderson
0
2.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Done Done
chrislema
186
16k
Bash Introduction
62gerente
615
210k
Practical Orchestrator
shlominoach
190
11k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
21
The browser strikes back
jonoalderson
0
55
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
26
How GitHub (no longer) Works
holman
316
140k
Chasing Engaging Ingredients in Design
codingconduct
0
71
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Transcript
前野 佑宜 アイレット株式会社 DX開発事業部 モダンエンジニアリングセクション ビジネスデザインG AWSでRAGを実現する上で 感じた3つの大事なこと ARI TechSummit
~AI・生成AI~
はじめに〜 LTの要点〜 本LTでお伝えしないこと • RAGの基本的な概念の解説 • 具体的な実装→Qiitaブログで解説しております • AWSでRAGを実現する上で学んだ教訓 ◦
RAGを実現する上で直面した課題、解決策 本LTでお伝えすること
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
前野 佑宜 2023年新卒入社/入社2年目 2024 Japan AWS Jr. Champions選出 アイレット株式会社 ま え の
ゆ う き 経歴 DX開発事業部/モダンエンジニアリングS/ビジネスデザインG 担当業務 Python/Laravelを使ったバックエンド開発を主に担当 現在はAWSの生成AIサービス/RAGを組み合わせたPoC(概 念実証)に従事 関心のある領域 AWS× AI/MLの領域(Amazon Bedrock/ Amazon SageMakerなど)
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
02.AWSでRAGを実現する手段を整理 AWSにおけるRAG構成パターン(代表例) Kendra+Bedrock Knowledge Base
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
03.実際に直面した課題 /解決策 「RAG」実現にあたって直面した課題 ①Kendraで同期できないデータがある ②検索性の問題 ③精度をどうやって評価する?
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある 同期に失敗 したファイル Document cannot be indexed since
it contains no text to index and search on. Document must contain some text 文字情報が 存在しないと index化不可
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある →Amazon Bedrock(Claude Haiku 3)によるテキスト化であ る程度解決 ※書き起こし精度は 元々のドキュメントに
依存 「可能な限りテキスト化して」
03.実際に直面した課題 /解決策 ②検索性の問題 データソースのファイル数増 →「ユーザーが本当に必要としている情報」⇔「実際表示される検索結果」 検証期間は残り 2週間。 なんとか結果を出さねば・・
03.実際に直面した課題 /解決策 ②検索性の問題 →メタデータによるフィルタリングで解決! RAG の精度を向上させる Advanced RAG on AWS
の道標 (AWS Blog)より引用 短い期間でも 改善可能と判断
03.実際に直面した課題 /解決策 ②検索性の問題 メタデータによるフィルタリングのイメージ
03.実際に直面した課題 /解決策 ③精度をどう評価する? RAGのパフォーマンスをどのように評価するか?が課題だった ・検証フェーズは約 1ヶ月。 ・RAG評価ツールに関する知見もあまりない (RAGAS やRAGChecker はちょっと聞いたことある、程度)
03.実際に直面した課題 /解決策 ③精度をどう評価する? →評価項目を定義し、 RAGの結果を定量化 「どんな質問をすることを想定?」 「どんな回答が返ってきたら満足度高い?」 「RAGにおいて何を重視している?」 お客様 「質問内容に近いドキュメントが返却される」
ことが大事
03.実際に直面した課題 /解決策 ③精度をどう評価する? →事前のすり合わせに基づいて、評価スコアを定義・評価 →可視化 最終評価するのはお客様。 →事前にすり合わせを行うことで 最終評価の参考にできる
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
04.RAGを実現する上で学んだ教訓 AWSのRAGにおいて大事だと思ったこと ①データソースの質を担保する重要性 ②前段の”検索”の仕組みの改善 ③精度評価 →「お客様と対話し、現場のニーズを把握」
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
RAG=「銀の弾丸」ではない! 地道な改善 /ニーズの把握 こそが成果につながる!
ご清聴ありがとうございました
参照文献 • 関連ブログ ◦ AWSでRAGを実装する上で感じた3つの大事なこと (Qiitaブログ) ◦ RAG の精度を向上させる Advanced
RAG on AWS の道標 (AWS)