Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSでRAGを実現する上で感じた3つの大事なこと
Search
y-mae
February 06, 2025
Technology
1
190
AWSでRAGを実現する上で感じた3つの大事なこと
ARI TechSummit ~AI・生成AI~(2025/02/06実施)LT登壇資料
y-mae
February 06, 2025
Tweet
Share
More Decks by y-mae
See All by y-mae
「genai-quickstart-pocs」を使ってお手軽に生成AIのPoCを始めよう!
ymae
3
180
生成AIとAWS CDKで実現! 自社ブログレビューの効率化
ymae
4
830
Other Decks in Technology
See All in Technology
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
18k
Platform EngineeringがあればSREはいらない!? 新時代のSREに求められる役割とは
mshibuya
2
4.1k
ココナラのセキュリティ組織の体制・役割・今後目指す世界
coconala_engineer
0
230
What's New in OpenShift 4.18
redhatlivestreaming
0
120
[2024年10月版] Notebook 2.0のご紹介 / Notebook2.0
databricksjapan
0
1.7k
Active Directory の保護
eurekaberry
4
2.4k
[JAWS-UG栃木]地方だからできたクラウドネイティブ事例大公開! / jawsug_tochigi_tachibana
biatunky
0
160
extensionとschema
yahonda
1
110
ソフトウェアアーキテクトのための意思決定術: Software Architecture and Decision-Making
snoozer05
PRO
17
4.1k
一人から始めたSREチーム3年の歩み - 求められるスキルの変化とチームのあり方 - / The three-year journey of the SRE team, which started all by myself
vtryo
7
5.8k
生成AIを活用した機能を、顧客に提供するまでに乗り越えた『4つの壁』
toshiblues
1
230
private spaceについてあれこれ調べてみた
operando
1
180
Featured
See All Featured
Done Done
chrislema
182
16k
For a Future-Friendly Web
brad_frost
176
9.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
The Cult of Friendly URLs
andyhume
78
6.2k
Docker and Python
trallard
43
3.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
GitHub's CSS Performance
jonrohan
1030
460k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Gamification - CAS2011
davidbonilla
80
5.1k
Transcript
前野 佑宜 アイレット株式会社 DX開発事業部 モダンエンジニアリングセクション ビジネスデザインG AWSでRAGを実現する上で 感じた3つの大事なこと ARI TechSummit
~AI・生成AI~
はじめに〜 LTの要点〜 本LTでお伝えしないこと • RAGの基本的な概念の解説 • 具体的な実装→Qiitaブログで解説しております • AWSでRAGを実現する上で学んだ教訓 ◦
RAGを実現する上で直面した課題、解決策 本LTでお伝えすること
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
前野 佑宜 2023年新卒入社/入社2年目 2024 Japan AWS Jr. Champions選出 アイレット株式会社 ま え の
ゆ う き 経歴 DX開発事業部/モダンエンジニアリングS/ビジネスデザインG 担当業務 Python/Laravelを使ったバックエンド開発を主に担当 現在はAWSの生成AIサービス/RAGを組み合わせたPoC(概 念実証)に従事 関心のある領域 AWS× AI/MLの領域(Amazon Bedrock/ Amazon SageMakerなど)
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
02.AWSでRAGを実現する手段を整理 AWSにおけるRAG構成パターン(代表例) Kendra+Bedrock Knowledge Base
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
03.実際に直面した課題 /解決策 「RAG」実現にあたって直面した課題 ①Kendraで同期できないデータがある ②検索性の問題 ③精度をどうやって評価する?
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある 同期に失敗 したファイル Document cannot be indexed since
it contains no text to index and search on. Document must contain some text 文字情報が 存在しないと index化不可
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある →Amazon Bedrock(Claude Haiku 3)によるテキスト化であ る程度解決 ※書き起こし精度は 元々のドキュメントに
依存 「可能な限りテキスト化して」
03.実際に直面した課題 /解決策 ②検索性の問題 データソースのファイル数増 →「ユーザーが本当に必要としている情報」⇔「実際表示される検索結果」 検証期間は残り 2週間。 なんとか結果を出さねば・・
03.実際に直面した課題 /解決策 ②検索性の問題 →メタデータによるフィルタリングで解決! RAG の精度を向上させる Advanced RAG on AWS
の道標 (AWS Blog)より引用 短い期間でも 改善可能と判断
03.実際に直面した課題 /解決策 ②検索性の問題 メタデータによるフィルタリングのイメージ
03.実際に直面した課題 /解決策 ③精度をどう評価する? RAGのパフォーマンスをどのように評価するか?が課題だった ・検証フェーズは約 1ヶ月。 ・RAG評価ツールに関する知見もあまりない (RAGAS やRAGChecker はちょっと聞いたことある、程度)
03.実際に直面した課題 /解決策 ③精度をどう評価する? →評価項目を定義し、 RAGの結果を定量化 「どんな質問をすることを想定?」 「どんな回答が返ってきたら満足度高い?」 「RAGにおいて何を重視している?」 お客様 「質問内容に近いドキュメントが返却される」
ことが大事
03.実際に直面した課題 /解決策 ③精度をどう評価する? →事前のすり合わせに基づいて、評価スコアを定義・評価 →可視化 最終評価するのはお客様。 →事前にすり合わせを行うことで 最終評価の参考にできる
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
04.RAGを実現する上で学んだ教訓 AWSのRAGにおいて大事だと思ったこと ①データソースの質を担保する重要性 ②前段の”検索”の仕組みの改善 ③精度評価 →「お客様と対話し、現場のニーズを把握」
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
RAG=「銀の弾丸」ではない! 地道な改善 /ニーズの把握 こそが成果につながる!
ご清聴ありがとうございました
参照文献 • 関連ブログ ◦ AWSでRAGを実装する上で感じた3つの大事なこと (Qiitaブログ) ◦ RAG の精度を向上させる Advanced
RAG on AWS の道標 (AWS)