Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSでRAGを実現する上で感じた3つの大事なこと
Search
y-mae
February 06, 2025
Technology
3
1.4k
AWSでRAGを実現する上で感じた3つの大事なこと
ARI TechSummit ~AI・生成AI~(2025/02/06実施)LT登壇資料
y-mae
February 06, 2025
Tweet
Share
More Decks by y-mae
See All by y-mae
AWS Summit 2024 re:Cap 登壇資料
ymae
0
4
「genai-quickstart-pocs」を使ってお手軽に生成AIのPoCを始めよう!
ymae
3
210
生成AIとAWS CDKで実現! 自社ブログレビューの効率化
ymae
4
930
Other Decks in Technology
See All in Technology
Microsoft_20250311_できるつくれるAIAgent.pdf
iotcomjpadmin
0
240
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
430
プロダクトの一番の理解者を目指してQAが取り組んでいること 〜現場・マネジメント各視点のプラクティス〜
hacomono
PRO
0
130
Platform Engineering for Private Cloud
cote
PRO
0
120
越境するプロダクトエンジニアリング
liaoziyang
0
170
プラクティスの名前は言わない方がいい / Not to mention the name of the practice
3l4l5
8
3.3k
OSSの実装を参考にBedrockエージェントを作る
moritalous
2
450
Cursorで学ぶAIエディター / understand-ai-editor-by-cursor
shuzon
0
270
組織のスケールを見据えたプロジェクトリードエンジニア制度の実践 / Project Lead Engineer for Scaling Engineering Organization
ohbarye
9
2.6k
AI の活用における課題と現状、今後の期待
asei
2
110
S3成長記録 in 2024 - オレたちのS3はどこに向かうのか?- @Storage-JAWS#7
p0n
1
100
AI活用の壁を超える! 開発組織への普及の秘訣
kouryou
0
320
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Six Lessons from altMBA
skipperchong
27
3.7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
22
2.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Become a Pro
speakerdeck
PRO
26
5.2k
Transcript
前野 佑宜 アイレット株式会社 DX開発事業部 モダンエンジニアリングセクション ビジネスデザインG AWSでRAGを実現する上で 感じた3つの大事なこと ARI TechSummit
~AI・生成AI~
はじめに〜 LTの要点〜 本LTでお伝えしないこと • RAGの基本的な概念の解説 • 具体的な実装→Qiitaブログで解説しております • AWSでRAGを実現する上で学んだ教訓 ◦
RAGを実現する上で直面した課題、解決策 本LTでお伝えすること
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
前野 佑宜 2023年新卒入社/入社2年目 2024 Japan AWS Jr. Champions選出 アイレット株式会社 ま え の
ゆ う き 経歴 DX開発事業部/モダンエンジニアリングS/ビジネスデザインG 担当業務 Python/Laravelを使ったバックエンド開発を主に担当 現在はAWSの生成AIサービス/RAGを組み合わせたPoC(概 念実証)に従事 関心のある領域 AWS× AI/MLの領域(Amazon Bedrock/ Amazon SageMakerなど)
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
02.AWSでRAGを実現する手段を整理 AWSにおけるRAG構成パターン(代表例) Kendra+Bedrock Knowledge Base
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
03.実際に直面した課題 /解決策 「RAG」実現にあたって直面した課題 ①Kendraで同期できないデータがある ②検索性の問題 ③精度をどうやって評価する?
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある 同期に失敗 したファイル Document cannot be indexed since
it contains no text to index and search on. Document must contain some text 文字情報が 存在しないと index化不可
03.実際に直面した課題 /解決策 ①Kendraで同期できないデータがある →Amazon Bedrock(Claude Haiku 3)によるテキスト化であ る程度解決 ※書き起こし精度は 元々のドキュメントに
依存 「可能な限りテキスト化して」
03.実際に直面した課題 /解決策 ②検索性の問題 データソースのファイル数増 →「ユーザーが本当に必要としている情報」⇔「実際表示される検索結果」 検証期間は残り 2週間。 なんとか結果を出さねば・・
03.実際に直面した課題 /解決策 ②検索性の問題 →メタデータによるフィルタリングで解決! RAG の精度を向上させる Advanced RAG on AWS
の道標 (AWS Blog)より引用 短い期間でも 改善可能と判断
03.実際に直面した課題 /解決策 ②検索性の問題 メタデータによるフィルタリングのイメージ
03.実際に直面した課題 /解決策 ③精度をどう評価する? RAGのパフォーマンスをどのように評価するか?が課題だった ・検証フェーズは約 1ヶ月。 ・RAG評価ツールに関する知見もあまりない (RAGAS やRAGChecker はちょっと聞いたことある、程度)
03.実際に直面した課題 /解決策 ③精度をどう評価する? →評価項目を定義し、 RAGの結果を定量化 「どんな質問をすることを想定?」 「どんな回答が返ってきたら満足度高い?」 「RAGにおいて何を重視している?」 お客様 「質問内容に近いドキュメントが返却される」
ことが大事
03.実際に直面した課題 /解決策 ③精度をどう評価する? →事前のすり合わせに基づいて、評価スコアを定義・評価 →可視化 最終評価するのはお客様。 →事前にすり合わせを行うことで 最終評価の参考にできる
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
04.RAGを実現する上で学んだ教訓 AWSのRAGにおいて大事だと思ったこと ①データソースの質を担保する重要性 ②前段の”検索”の仕組みの改善 ③精度評価 →「お客様と対話し、現場のニーズを把握」
01 アジェンダ 自己紹介 02 AWSでRAGを実現する手段を整理 03 実際に直面した課題 /解決策 04 RAGを実現する上で学んだ教訓
05 まとめ
RAG=「銀の弾丸」ではない! 地道な改善 /ニーズの把握 こそが成果につながる!
ご清聴ありがとうございました
参照文献 • 関連ブログ ◦ AWSでRAGを実装する上で感じた3つの大事なこと (Qiitaブログ) ◦ RAG の精度を向上させる Advanced
RAG on AWS の道標 (AWS)