Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML...
Search
Kon
July 19, 2019
Science
1
3.6k
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML package
https://data-engineering.connpass.com/event/136756/
Kon
July 19, 2019
Tweet
Share
More Decks by Kon
See All by Kon
Numerai はいいぞ / An encouragement of Numerai
yohrn
0
3k
M5 Forecasting 参加報告 / 143rd place solution of M5 Forecasting Accuracy
yohrn
1
1.4k
AutoML はお好きですか? / 8th place solution of AutoWSL 2019
yohrn
1
3.5k
3rd Place Solution of AutoSpeech 2019
yohrn
0
480
自然言語処理初心者が AutoNLP に挑戦した話 / 8th place solution of AutoNLP 2019
yohrn
0
950
機械学習の再現性 / Enabling Reproducibility in Machine Learning Workshop
yohrn
9
3k
異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification
yohrn
0
7.1k
35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification
yohrn
0
8.9k
機械学習の公平性と解釈可能性 / Fairness, Interpretability, and Explainability Federation of Workshops
yohrn
5
2.6k
Other Decks in Science
See All in Science
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
840
データベース03: 関係データモデル
trycycle
PRO
1
270
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
360
データベース10: 拡張実体関連モデル
trycycle
PRO
0
990
データマイニング - ノードの中心性
trycycle
PRO
0
270
Explanatory material
yuki1986
0
410
サイゼミ用因果推論
lw
1
7.5k
機械学習 - pandas入門
trycycle
PRO
0
320
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.4k
凸最適化からDC最適化まで
santana_hammer
1
300
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
150
CV_5_3dVision
hachama
0
150
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
570
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Six Lessons from altMBA
skipperchong
28
4k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Typedesign – Prime Four
hannesfritz
42
2.8k
Become a Pro
speakerdeck
PRO
29
5.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Thoughts on Productivity
jonyablonski
70
4.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Navigating Team Friction
lara
189
15k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Transcript
AutoML パッケージの開発を円滑に進めたい データと ML 周辺エンジニアリングを考える会 #2 Jul 19, 2019
Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -
) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
約 3 ヶ月,同僚 3 名と以下の大会に参加した April 1, 2019 - July
20, 2019 3 任意のデータセットに対 する予測精度を競う大会 https://www.4paradigm.com/competition/kddcup2019
何故参加したか? AutoML 周辺技術の調査 開発力強化 案件利用 4
本大会の内容は? 入力 • 5 つの表形式データセット • スキーマ,関係等が記載されたファイル(右図) 提出物 • 学習,予測を行うコード
制約 • 計算資源:4 vCPUs (16 GB Memory) • 計算時間:数十分程度 評価指標 • AUROC 5
本大会の課題は? 時系列データの扱い • data leak を予防する方法は? • concept drift に対応する方法は?
複数表の扱い • 一対多,多対多で結ばれる表を結合する方法は? 4 つの型の扱い • cat 型を num 型に変換する方法は? • multi-cat 型を num 型に変換する方法は? • time 型を num 型に変換する方法は? 6
Concept drift とは? データを生成する確率分布が時間経過で変化する現象 • cat 型の場合,新規カテゴリの出現が相当 7 Gama, J.,
et al., "A survey on concept drift adaptation," ACM CSUR, 46(4), p. 44, 2014.
結果は? 計算時間超過で失格… 通過チームは 31/161 パッケージの内容は 懇親会でお話します 8
開発中,問題になったことは? コードが煩雑で,予測精度が低下した際にバグを特定できない 9
どうやってこれらの問題を解決したか? Codecov カバレッジを記録 CircleCI テストを実行 Comet.ml 学習結果を記録 開発者 変更を push/PR
GitHub 外部サービスに通知 テスト及び CV スコアの監視を継続的に行い,バグの混入を早急に察知する 10
何故これらのサービスを採用したか? 環境構築の手間を削減できるため • mlflow は自身でサーバを構築する必要がある private リポジトリに無料利用できるため • Travis CI
は課金する必要がある • Code Climate は private リポジトリに利用できない 11
何を学習結果として記録したか? • commit ID • ブランチ名 • 実行日時 • 計算時間
• 標準出力 • 依存関係 • 学習曲線 • CV スコア • ベストパラメータ • 等 12