Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML...
Search
Kon
July 19, 2019
Science
1
3.6k
AutoML パッケージの開発を円滑に進めたい / How to develop AutoML package
https://data-engineering.connpass.com/event/136756/
Kon
July 19, 2019
Tweet
Share
More Decks by Kon
See All by Kon
Numerai はいいぞ / An encouragement of Numerai
yohrn
0
3k
M5 Forecasting 参加報告 / 143rd place solution of M5 Forecasting Accuracy
yohrn
1
1.5k
AutoML はお好きですか? / 8th place solution of AutoWSL 2019
yohrn
1
3.5k
3rd Place Solution of AutoSpeech 2019
yohrn
0
490
自然言語処理初心者が AutoNLP に挑戦した話 / 8th place solution of AutoNLP 2019
yohrn
0
960
機械学習の再現性 / Enabling Reproducibility in Machine Learning Workshop
yohrn
9
3.1k
異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification
yohrn
0
7.2k
35th ICML における異常検知に関する論文紹介 / Deep One-Class Classification
yohrn
0
9.1k
機械学習の公平性と解釈可能性 / Fairness, Interpretability, and Explainability Federation of Workshops
yohrn
5
2.6k
Other Decks in Science
See All in Science
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
140
データベース02: データベースの概念
trycycle
PRO
2
980
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
120
2025-06-11-ai_belgium
sofievl
1
210
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
120
データマイニング - コミュニティ発見
trycycle
PRO
0
180
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
2025-05-31-pycon_italia
sofievl
0
110
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
730
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
A better future with KSS
kneath
240
18k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Navigating Team Friction
lara
191
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Transcript
AutoML パッケージの開発を円滑に進めたい データと ML 周辺エンジニアリングを考える会 #2 Jul 19, 2019
Yu Ohori (a.k.a. Kon) NS Solutions Corporation (Apr 2017 -
) • Researcher • Data Science & Infrastructure Technologies • System Research & Development Center • Technology Bureau @Y_oHr_N @Y-oHr-N #SemiSupervisedLearning #AnomalyDetection #DataOps
約 3 ヶ月,同僚 3 名と以下の大会に参加した April 1, 2019 - July
20, 2019 3 任意のデータセットに対 する予測精度を競う大会 https://www.4paradigm.com/competition/kddcup2019
何故参加したか? AutoML 周辺技術の調査 開発力強化 案件利用 4
本大会の内容は? 入力 • 5 つの表形式データセット • スキーマ,関係等が記載されたファイル(右図) 提出物 • 学習,予測を行うコード
制約 • 計算資源:4 vCPUs (16 GB Memory) • 計算時間:数十分程度 評価指標 • AUROC 5
本大会の課題は? 時系列データの扱い • data leak を予防する方法は? • concept drift に対応する方法は?
複数表の扱い • 一対多,多対多で結ばれる表を結合する方法は? 4 つの型の扱い • cat 型を num 型に変換する方法は? • multi-cat 型を num 型に変換する方法は? • time 型を num 型に変換する方法は? 6
Concept drift とは? データを生成する確率分布が時間経過で変化する現象 • cat 型の場合,新規カテゴリの出現が相当 7 Gama, J.,
et al., "A survey on concept drift adaptation," ACM CSUR, 46(4), p. 44, 2014.
結果は? 計算時間超過で失格… 通過チームは 31/161 パッケージの内容は 懇親会でお話します 8
開発中,問題になったことは? コードが煩雑で,予測精度が低下した際にバグを特定できない 9
どうやってこれらの問題を解決したか? Codecov カバレッジを記録 CircleCI テストを実行 Comet.ml 学習結果を記録 開発者 変更を push/PR
GitHub 外部サービスに通知 テスト及び CV スコアの監視を継続的に行い,バグの混入を早急に察知する 10
何故これらのサービスを採用したか? 環境構築の手間を削減できるため • mlflow は自身でサーバを構築する必要がある private リポジトリに無料利用できるため • Travis CI
は課金する必要がある • Code Climate は private リポジトリに利用できない 11
何を学習結果として記録したか? • commit ID • ブランチ名 • 実行日時 • 計算時間
• 標準出力 • 依存関係 • 学習曲線 • CV スコア • ベストパラメータ • 等 12