Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RSA暗号から学ぶ公開鍵暗号の仕組み
Search
Yusuke Inai
May 17, 2021
Programming
1
280
RSA暗号から学ぶ公開鍵暗号の仕組み
Yusuke Inai
May 17, 2021
Tweet
Share
More Decks by Yusuke Inai
See All by Yusuke Inai
で、エンジニアになって1年経ったけどどう?
youliangdao
1
270
人よりアウトプットができるようになるためのコツ
youliangdao
0
150
Next.jsから見る Webフロントエンドの歴史
youliangdao
1
930
SaaSスタートアップで3ヶ月働いてみて感じた現実(リアル)
youliangdao
0
420
個人開発で挫折する人を救いたい
youliangdao
2
3.1k
Qiitaでバズりやすい記事の書き方を伝授する
youliangdao
0
3.1k
React って本当に使う意味あるの? 〜SPA と React の「キホン」の「キ」〜
youliangdao
1
200
PumaとUnicornって結局何なん!?
youliangdao
0
810
"ぼくのかんがえたさいきょうの"勉強法
youliangdao
0
330
Other Decks in Programming
See All in Programming
XStateを用いた堅牢なReact Components設計~複雑なClient Stateをシンプルに~ @React Tokyo ミートアップ #2
kfurusho
1
890
Compose でデザインと実装の差異を減らすための取り組み
oidy
1
300
Honoのおもしろいミドルウェアをみてみよう
yusukebe
1
210
WebDriver BiDiとは何なのか
yotahada3
1
140
プログラミング言語学習のススメ / why-do-i-learn-programming-language
yashi8484
0
130
動作確認やテストで漏れがちな観点3選
starfish719
6
1k
Kubernetes History Inspector(KHI)を触ってみた
bells17
0
220
[JAWS-UG横浜 #80] うわっ…今年のServerless アップデート、少なすぎ…?
maroon1st
1
180
DevinとCursorから学ぶAIエージェントメモリーの設計とMoatの考え方
itarutomy
1
680
[Fin-JAWS 第38回 ~re:Invent 2024 金融re:Cap~]FaultInjectionServiceアップデート@pre:Invent2024
shintaro_fukatsu
0
410
Java Webフレームワークの現状 / java web framework at burikaigi
kishida
9
2.2k
『GO』アプリ データ基盤のログ収集システムコスト削減
mot_techtalk
0
120
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
How to Ace a Technical Interview
jacobian
276
23k
Thoughts on Productivity
jonyablonski
69
4.5k
Building Adaptive Systems
keathley
40
2.4k
Music & Morning Musume
bryan
46
6.3k
Typedesign – Prime Four
hannesfritz
40
2.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Being A Developer After 40
akosma
89
590k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Transcript
RSA暗号から学ぶ 公開鍵暗号の仕 組み 〜大切なことは全部、公開鍵警察から教わっ た〜
〜とある日〜
ワイ「おっしゃ、公開鍵暗号の仕組みなんとなく理 解でけた!」 ワイ「復習も兼ねてアウトプット代わりにちょっとツイー トでもすっか」
None
〜数分後〜
ワイ「お、こんな自己満ツイートに珍しくリプ来とる。 ありがたいなぁ。どんなリプやろ?」
None
None
None
※※警察からの注意喚起※※ ①「南京錠のイメージ」はやめろ! ②「鍵の意味」をちゃんと理解しろ!
①「南京錠のイメージ」はやめ ろ!
よくある公開鍵暗号のイメー ジ
None
None
None
一般的な「暗号」「鍵」のイメージに引っ張られてしまってい る
これは「機密性の担保」しか 示していない (「鍵」「暗号」が名前についているためそっち に引っ張られてしまう。。)
出典:「総務省 国民のための情報セキュリティサイト」より引用
これらもあくまで「機密性の担保」のイメージ!
残りのイメージを反映 できていない!!
公開鍵暗号の正しい認識 ①機密性を担保(盗聴防止) ②完全性を担保(改竄防止) ③真正性を担保(なりすまし防止) →正確には上記3つくらいの役割を担うことが可能
None
②「鍵の意味」をちゃんと理解 しろ!
公開鍵暗号
公開鍵暗号の歴史 ①1960年以前 共通鍵暗号が普及する中で「鍵配送問題」が出現 ②1960年代 イギリスの政府通信本部の暗号学者ジェームズ・エリスが鍵配送問 題の解決案を提示。 →公開鍵暗号の元アイデア ③1973年 エリスの後輩コックス、具体的案として「一方向関数の使用」を思い つく
④1976年 米国のホイットフィールド・ディフィーとマーティン・ヘルマンが、実用 的な一方向関数を見つけて、公開鍵暗号の具体的な理論を構築。 (=DH法) ⑤1977年 リベスト、シャミア、エーデルマンの3人が、素因数分解の困難性を元 に2種類の機能を実現する公開鍵暗号の方式を発表。 (=RSA暗号)。今でも ( 主に署名の方が ) 広く使われている
①鍵配送問題の出現
具体的問題点 鍵を受け渡したいなら、鍵に鍵をかけて送ればいいと思うが… •メッセージに鍵をかける ◦メッセージを守る鍵を安全に受け渡す必要がある •鍵に鍵をかける ◦鍵を守る鍵を安全に受け渡す必要がある ...…
None
②鍵配送問題の解決案=公開鍵暗号の元アイデ ア
「保護の仕組みは公開してはいけないもの」という発想から、「保護 を "解除する" 仕組みは公開してはいけないもの」という発想に転 換させることで、鍵配送問題を見事にクリア。
出典:「対称性 - Wikipedia」より引用
③−1 エリスのアイデア実現に必要なもの
③−2 一方向関数 相互に変換可能な関数であり、かつある方向への変換は簡単な のに、逆方向の変換は大変な関数 →具体例として、 ハッシュ関数・素因数分解・離散対数問題 etc……が存在
None
④公開鍵暗号の具体的理論の実装 具体的暗号方式 使用している一方向関数 DH法 離散対数問題 RSA暗号 素因数分解
RSA暗号
RSA暗号とは? 「『桁数が大きい合成数の素因数分解問題』が困 難であること」 を安全性の根拠とした公開鍵暗号の一つである。
素因数分解の困難性 【例題①】 (1) 125×227を計算しなさい。 (2) 221を素因数分解しなさい。 (3) 25651を素因数分解しなさい。
RSA暗号の仕組み 【例題②】 という2つの素数を用いて、X=8という情 報をRSA暗号化しなさい
フェルマーの小定理 を相異なる素数とすると、 が成り立つ。Xは任意の自然数。 (※ただし厳密には、少し条件が異なる)
p=3、q=2の場合(Xは任意の数をイメージ) 全ての数は0から5に集約 元の値 0 1 2 3 4 5 6で割った時の余り
6 12 18 … 7 13 19 … 8 14 20 … 9 15 21 … 10 16 22 … 11 17 23 … 元の値を各列の乗数した値を 6で割った余り 1 2 3 4 5 6 7 … 0 0 0 0 0 0 0 … 1 1 1 1 1 1 1 … 2 4 2 4 2 4 2 … 3 3 3 3 3 3 3 … 4 4 4 4 4 4 4 … 5 1 5 1 5 1 5 …
例題の解法の流れ Step1 2つの素数p,qを用意する Step2 受信側が を満たす整数P,Qを見つけ、Pを公 開鍵、Qを秘密鍵と決める Step3 送信側が
を送り、受信側が と複合して完了
Step1:2つの素数p,qを用意する 本問では予め と用意されているので、これを利用する。 (※ただし実際には、もっと大きな数の素数を準備する必要がある。 100桁以上が目安)
Step2:公開鍵と秘密鍵の設定 p=3、q=11であるので となる。 つまり、PQ=21を満たすような鍵のペアを決める。 今回は例として 公開鍵P→3、秘密鍵Q→7 とする
Step3:暗号化して情報を送信 送りたい情報がX=8、公開鍵がP=3なので と計算する。 次に、もう一つ公開されている情報のpq=33を用いて、合同式 を計算する。
つまり、X=8 という情報が X’=17 に暗号化された
Step3:復号化して情報を受け取る 受け取った情報 X’=17を復号する ここでは17を、最初に設定した秘密鍵Q(=7)乗してみると 最後に、pq=33 を法として計算すると となる
つまり、元の情報 X=8 が復号でき た
まとめ
補足(時間的に余裕があれば …)
RSA暗号の安全性 RSA暗号は前方秘匿性の問題が存在 =現実的時間で秘密鍵の解読が可能な場合がある。 (さっきの例だとpq=33の素因数分解が簡単にできる? …というイメージ) →そのため現在では ハイブリット暗号(共通鍵+公開鍵) が使用されている (また、ハイブリット暗号で用いられるものとしては DH法が多い)