Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AGI福岡 第3回
Search
yuky_az
November 14, 2024
Technology
0
96
AGI福岡 第3回
AGI時代に向けて、今からできることを共に考え、実行していこう!
yuky_az
November 14, 2024
Tweet
Share
More Decks by yuky_az
See All by yuky_az
AGI福岡 第6回
yukinaga
0
87
AGI福岡 第5回
yukinaga
0
130
AGI福岡 第2回
yukinaga
0
100
生成AIの現状と展望: AIと共生する未来への道程
yukinaga
3
1.1k
BERTによる自然言語処理を学ぼう!【 Live!人工知能 #26】 #Live人工知能
yukinaga
0
400
iOSアプリは「感情」を宿すのか? AIとアプリの未来について
yukinaga
2
1.1k
iOSアプリに「意識」は宿るのか? ディープラーニングの先にある人工知能(AI)
yukinaga
6
5.8k
ヒトとAIの共生、そしてシンギュラリティ
yukinaga
0
1k
iOSと(深層)強化学習
yukinaga
6
8.9k
Other Decks in Technology
See All in Technology
Infrastructure as Prompt実装記 〜Bedrock AgentCoreで作る自然言語インフラエージェント〜
yusukeshimizu
1
130
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
160
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
970
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.2k
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
22
5.4k
Claude Codeは仕様駆動の夢を見ない
gotalab555
23
6.7k
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
150
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
580
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
230
LTに影響を受けてテンプレリポジトリを作った話
hol1kgmg
0
370
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
2
720
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.6k
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Gamification - CAS2011
davidbonilla
81
5.4k
Facilitating Awesome Meetings
lara
54
6.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Faster Mobile Websites
deanohume
308
31k
Optimizing for Happiness
mojombo
379
70k
The Cult of Friendly URLs
andyhume
79
6.5k
Transcript
"(*Ԭୈճ !ΤϯδχΞΧϑΣ
Φʔϓχϯά
ʮ൚༻ਓೳʢ"(*ʣʯͱʮಛԽܕਓೳʯ ൚༻ਓೳʢ˺ڧ͍"*ʣ ˠώτͷೳͷΑ͏ͳ൚༻ੑΛ࣋ͭ"* FHυϥ͑ΜɺమΞτϜͳͲ ಛԽܕਓೳʢ˺ऑ͍"*ʣ ˠݶఆతͳղܾਪ FHνΣεকعͷ"*ɺը૾ೝࣝͳͲ ࠷৽ͷ--.ͲͪΒʁ
"(*ͷొؒۙʁ 4*56"5*0/"-"8"3&/&44 ΑΓ IUUQTTJUVBUJPOBMBXBSFOFTTBJGSPNBHJ UPTVQFSJOUFMMJHFODF
ϊʔϕϧཧֶ © Johan Jarnestad/The Royal Swedish Academy of Sciences John
Hop fi eld and Geoffrey Hinton. Ill. Niklas Elmehed © Nobel Prize Outreach ͷϊʔϕϧཧֶɺ δϣϯɾ+ɾϗοϓϑΟʔϧυʢถࠃʣͱδΣϑϦʔɾ&ɾώϯτϯʢΧφμʣ͕ड
ϊʔϕϧཧֶ • डཧ༝ → ػցֶशͱਓχϡʔϥϧωοτϫʔΫͷج൫Λߏங͠ɺσʔλύλʔϯͷ هԱɾ࠶ݱΛՄೳʹͨ͠ޭɻ • ओͳۀ → ϗοϓϑΟʔϧυɿεϐϯܥͷཧֶͷݪཧΛԠ༻ͨ͠ʮϗοϓϑΟʔϧυ
ωοτϫʔΫʯΛ։ൃ͠ɺσʔλύλʔϯͷอଘͱ෮ݩΛ࣮ݱɻ → ώϯτϯɿʮϘϧπϚϯϚγϯʯΛ։ൃ͠ɺσʔλ͔ΒಛΛֶश͢Δٕज़ Λཱ֬ɻAIͱػցֶशͷඈ༂తͳਐలʹߩݙɻ • Өڹ → AIͱཧֶͷ༥߹ʹΑΔൃలΛଅਐ͠ɺԠ༻ͰͷՄೳੑΛେ͖֦͘େɻ
"(*Ԭͷҙٛ w "(*࣌ʹ͚ͯɺࠓ͔ΒͰ͖Δ͜ͱΛڞʹߟ͑ɺ ࣮ߦ͍ͯ͜͠͏ʂ
ӡӦऀհ w զ࠺ʢ4"*-BCגࣜձࣾʣ w ۙ౻ݑࣇʢגࣜձࣾελσΟετʣ w େ৴ߊʢ/0#%"5"גࣜձࣾʣ w ੨྄ʢςΠϧΠϯυגࣜձࣾʣ
දऀհ զ࠺ :VLJOBHB"[VNB !ZVLZ@B[ 4"*-BCגࣜձࣾදऔక w "*ؔ࿈ͷڭҭɺݚڀ w ཧֶത࢜ʢཧֶʣ w
๏େֶσβΠϯֶ෦݉ߨࢣ w 6EFNZͰສਓΛࢦಋ w ༗໊اۀͰ"*ݚमΛ୲ w ஶॻʹʮ͡ΊͯͷσΟʔϓϥʔχϯάʯͳͲ w झຯϒϥδϦΞϯॊज़"*Ξʔτ
ϋογϡλά BHJGVLVPLB
"(*Ԭ%JTDPSEίϛϡχςΟ
:PV5VCFϥΠϒ ʮ&OHJOFFSDBGF"(*ԬʯͰ:PV5VCFݕࡧ
ࠓճͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOO
ϗοϓϑΟʔϧυωοτϫʔΫͱʁ
δϣϯɾϗοϓϑΟʔϧυࢯͷհ ݚڀऀͱͯ͠ͷܦྺ • ੜ·ΕɺΞϝϦΧͷཧֶऀɾੜཧֶऀ • ϓϦϯετϯେֶͰཧֶΛઐ߈ʢ1I%ʣ • ΧϦϑΥϧχΞՊେֶɺϓϦϯετϯେֶͳͲͰڭ佃 • ཧֶ͔ΒਆܦՊֶݚڀྖҬΛ֦େ
• ෳࡶܥͷݚڀͰଟେͳޭ ओͳۀͱධՁ • ɿϗοϓϑΟʔϧυωοτϫʔΫΛఏҊ • ཧֶͷ֓೦Λ༻͍ͯχϡʔϥϧωοτΛཧԽ • ݱͷਂֶशͷཧతج൫Λங͍ͨઌۦऀͷҰਓ Ill. Niklas Elmehed © Nobel Prize Outreach
ϗοϓϑΟʔϧυωοτϫʔΫͷݩจ ถࠃՊֶΞΧσϛʔلཁʹܝࡌ IUUQTXXXQOBTPSHEPJQOBT
جຊΞʔΩςΫνϟ ωοτϫʔΫߏ • ͯ͢ͷχϡʔϩϯ͕૬ޓʹ݁߹ • ֤χϡʔϩϯํʹଓɺͨͩࣗ͠ݾ݁߹ଘࡏ͠ͳ͍ • ݁߹ͷॏΈରশతʢ ʣ •
χϡʔϩϯͷঢ়ଶࢄʢ ʣ·ͨೋʢ ʣ ಈ࡞ͷಛ • ΤωϧΪʔؔ ʹجͮ͘ঢ়ଶߋ৽ ◦ ɿχϡʔϩϯ ͷᮢʢόΠΞεʣ • ඇಉظతͳঢ়ଶߋ৽ʢҰʹͭͷχϡʔϩϯʣ • ہॴతͳใͷΈͰߋ৽அ • ΤωϧΪʔ࠷খԽʹΑΔ҆ఆঢ়ଶͷऩଋ • ཧֶͷεϐϯάϥεϞσϧͱྨࣅͨ͠ৼΔ͍ wij = wji si ∈ − 1, + 1 si ∈ 0,1 E = − 1 2 ∑ i,j wij si sj − ∑ i θi si θi i
ಈ࡞ݪཧ ঢ়ଶߋ৽ͷϝΧχζϜ • ֤χϡʔϩϯͷೖྗɿ • ߋ৽نଇɿ ࢄʢۃੑʣͷ߹ɿ ೋʢ୯ۃੑʣͷ߹ɿ
• ඇಉظతͳߋ৽ʢϥϯμϜʹબΜͩͭͷχϡʔϩϯΛߋ৽ʣ • ͯ͢ͷχϡʔϩϯ͕҆ఆ͢Δ·Ͱ܁Γฦ͠ hi = ∑ j wij sj + θi si = { +1 JG hi ≥ 0 −1 JG hi < 0 si = { 1 JG hi ≥ 0 0 JG hi < 0
ಈ࡞ݪཧ ΤωϧΪʔͱऩଋ • ΤωϧΪʔؔঢ়ଶߋ৽ʹΑΓ୯ௐݮগ • γεςϜඞͣہॴ࠷খʹऩଋ • ࠷ऴঢ়ଶॳظঢ়ଶʹґଘ • ΤωϧΪʔܗͷΠϝʔδɿ
◦ࢁʢෆ҆ఆঢ়ଶʣ͔Β୩ʢ҆ఆঢ়ଶʣ ◦ෳͷ҆ఆঢ়ଶʢہॴ࠷খʣ͕ଘࡏ ◦هԱύλʔϯ҆ఆঢ়ଶͷҰͭʹରԠ
ֶशͱهԱ ֶशʢॏΈͷܾఆʣ • ݁߹ՙॏͷֶशଇɿ ʢ ʣ ◦ ɿχϡʔϩϯ ◦ ɿهԱͤ͞Δύλʔϯ
◦ ɿύλʔϯ ʹ͓͚Δχϡʔϩϯ ͷঢ়ଶ • ҰͷܭࢉͰॏΈΛܾఆʢඇ෮తʣ • ੜֶతͳϔϒଇʹجͮ͘ هԱ༰ྔͱಛ • ཧతͳهԱ༰ྔɿ ◦ ݸͷχϡʔϩϯͰ ݸͷύλʔϯΛهԱՄೳ • ϊΠζΛؚΉೖྗ͔Βͷى͕Մೳ • ύλʔϯͷҰ෦͔ΒશମΛ࠶ߏ wij = 1 N ∑p μ=1 sμ i sμ j i ≠ j N p sμ i μ i pmax ≈ 0.14N N 0.14N
Ԡ༻ྫͱಛ දతͳԠ༻ྫ • ࿈هԱγεςϜ ◦ύλʔϯ෮ݩɾϊΠζআڈ ◦ෆશͳೖྗ͔Βͷى • Έ߹Θͤ࠷దԽ ◦८ճηʔϧεϚϯ ◦εέδϡʔϦϯά
རͱݶք • རɿฒྻॲཧ͕ՄೳɺϋʔυΣΞ࣮͕༰қ • ݶքɿهԱ༰ྔͷ੍ݶʢ ʣɺہॴղʹؕΔՄೳੑ 0.14N
ൃలͱӨڹ తͳൃల • ϘϧπϚϯϚγϯͷਐԽ ◦֬తͳৼΔ͍ͷಋೖɺӅΕͷՃ • ࿈ଓϞσϧͷ։ൃ ◦ΞφϩάχϡʔϩϯͷಋೖɺΑΓ๛͔ͳදݱೳྗͷ֫ಘ ݱͷӨڹ •
ཧֶͷݟͷ׆༻ ◦ΤωϧΪʔ࠷খԽʹΑΔֶश ◦֬తΞϓϩʔνͷجૅ
ϗοϓϑΟʔϧυωοτϫʔΫͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOOUSFFNBJOTFDUJPO@
ϘϧπϚϯϚγϯͱʁ
δΣϑϦʔɾώϯτϯࢯͷհ Ill. Niklas Elmehed © Nobel Prize Outreach ܦྺͱݚڀ •
ΠΪϦεੜ·ΕɺʮσΟʔϓϥʔχϯάͷʯ • τϩϯτେֶڭतɺ(PPHMF3FTFBSDIॴଐ • ೝ৺ཧֶ͔Βਓೳݚڀ • ਂֶशͷཧతجૅΛཱ֬ ओͳۀ • ޡࠩٯ๏ͷ࠶ൃݟʢʣ • %FFQ#FMJFG/FUXPSLͷఏҊʢʣ • νϡʔϦϯάडʢʣ • "*҆શੑͷܯʢʣ
ϘϧπϚϯϚγϯͷݩจ τϩϯτେֶͷΣϒαΠτʹܝࡌ IUUQTXXXDTUPSPOUPFEVdGSJU[BCTQTDPHTDJCNQEG
എܠͱੜ ։ൃͷഎܠ • ɺϗοϓϑΟʔϧυωοτϫʔΫͷݶք • ౷ܭྗֶʢϘϧπϚϯʣͷԠ༻Λண • )JOUPO4FKOPXTLJʹΑΔڞಉݚڀʢʣ • ֬తͳৼΔ͍ͷಋೖ
ओཁͳֵ৽ • ֬తͳχϡʔϩϯͷಋೖ • ԹύϥϝʔλʹΑΔ੍ޚ • ӅΕϢχοτͷಋೖ • ΤωϧΪʔ࠷খԽͱ֬తֶशͷ౷߹
جຊΞʔΩςΫνϟ ωοτϫʔΫߏ • ՄࢹͱӅΕͷߏ • ͯ͢ͷϢχοτ͕ؒํʹ݁߹ • ֬తͳঢ়ଶભҠɿ ◦
ɿঢ়ଶมԽʹ͏ΤωϧΪʔมԽ ◦ ɿԹύϥϝʔλ ΤωϧΪʔؔ • ◦ ɿϢχοτؒͷ݁߹ॏΈ ◦ ɿϢχοτͷঢ়ଶʢ·ͨʣ ◦ ɿόΠΞε߲ • Թ ʹΑͬͯঢ়ଶΛ੍ޚ p(si = 1) = 1 1 + e−ΔEi/T ΔEi T E = − ∑ i<j wij si sj − ∑ i θi si wij si θi T
ಈ࡞ϝΧχζϜ ঢ়ଶભҠͷΈ • ϘϧπϚϯʹै͏֬తͳঢ়ଶߋ৽ ◦ ◦ ɿؔ ɿશϢχοτͷঢ়ଶϕΫτϧ •
ΪϒεαϯϓϦϯάʹΑΔঢ়ଶભҠ ◦ϥϯμϜʹબΜͩϢχοτΛ֬తʹߋ৽ ◦ฏߧঢ়ଶʹ౸ୡ͢Δ·Ͱ܁Γฦ͠ Թ੍ޚͱ࠷దԽ • γϛϡϨʔςουΞχʔϦϯάͷར༻ ◦ߴԹ͔Β։࢝͠ɺঃʑʹԹΛԼ͛Δ ◦ہॴղճආͱେҬత࠷దԽ • ԹʹΑΔ୳ࡧɾऩଋͷ੍ޚ ◦ߴԹɿϥϯμϜͳ୳ࡧԹɿہॴతͳ࠷దԽ P(s) = 1 Z e−E(s)/T Z s
ֶशΞϧΰϦζϜ ֶशͷجຊࣜ • ॏΈߋ৽ଇɿ ◦ ɿֶश ◦ ɿσʔλͷظʢਖ਼૬ʣ ◦
ɿϞσϧͷظʢෛ૬ʣ ্࣮ͷ • ίϯτϥεςΟϒμΠόʔδΣϯεʢ$%ʣ๏ͷಋೖ ◦શͳऩଋΛͨͣʹֶश ◦গεςοϓͷαϯϓϦϯάͰ༻ • Թεέδϡʔϧͷઃఆ ◦ֶशॳظߴԹͰ୳ࡧతʹ ◦ֶशޙظԹͰऩଋΛଅਐ Δwij = η(⟨si sj ⟩data − ⟨si sj ⟩model ) η ⟨ ⋅ ⟩data ⟨ ⋅ ⟩model
ൃలͱԠ༻ Ϟσϧͷൃల • ੍ݶϘϧπϚϯϚγϯʢ3#.ʣͷߟҊ ◦ؒͷΈͷ݁߹ʹΑΔޮԽ ◦%FFQ#FMJFG/FUXPSLͷجૅʹ • %FFQ-FBSOJOHֵ໋ͷߩݙ ◦ਂֶशͷࣄલֶशख๏ͱͯ͠׆༻ ◦ੜϞσϧͷجຊ֓೦Λཱ֬
ϘϧπϚϯϚγϯͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOOUSFFNBJOTFDUJPO@
Ԭͷ"(* Γ্͍͖͛ͯ·͠ΐ͏ʂ