Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AGI福岡 第3回
Search
yuky_az
November 14, 2024
Technology
0
110
AGI福岡 第3回
AGI時代に向けて、今からできることを共に考え、実行していこう!
yuky_az
November 14, 2024
Tweet
Share
More Decks by yuky_az
See All by yuky_az
AGI福岡 第8回
yukinaga
0
100
AGI福岡 第6回
yukinaga
0
120
AGI福岡 第5回
yukinaga
0
180
AGI福岡 第2回
yukinaga
0
120
生成AIの現状と展望: AIと共生する未来への道程
yukinaga
3
1.1k
BERTによる自然言語処理を学ぼう!【 Live!人工知能 #26】 #Live人工知能
yukinaga
0
420
iOSアプリは「感情」を宿すのか? AIとアプリの未来について
yukinaga
2
1.1k
iOSアプリに「意識」は宿るのか? ディープラーニングの先にある人工知能(AI)
yukinaga
6
6k
ヒトとAIの共生、そしてシンギュラリティ
yukinaga
0
1.1k
Other Decks in Technology
See All in Technology
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
0
330
Werner Vogelsが14年間 問い続けてきたこと
yusukeshimizu
2
260
The Engineer with a Three-Year Cycle - 2
e99h2121
0
210
みんなだいすきALB、NLBの 仕組みから最新機能まで総おさらい / Mastering ALB & NLB: Internal Mechanics and Latest Innovations
kaminashi
0
140
Digitization部 紹介資料
sansan33
PRO
1
6.7k
Lambda Durable FunctionsでStep Functionsの代わりはできるのかを試してみた
smt7174
3
170
GCASアップデート(202510-202601)
techniczna
0
200
JuliaTokaiとしてはこれが最後かもしれない(仮) for NGK2026S
antimon2
0
130
VRTと真面目に向き合う
hiragram
1
510
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
1
230
「AIでできますか?」から「Agentを作ってみました」へ ~「理論上わかる」と「やってみる」の隔たりを埋める方法
applism118
13
8.6k
AI開発の落とし穴 〜馬には乗ってみよAIには添うてみよ〜
sansantech
PRO
10
5.5k
Featured
See All Featured
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
190
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
100
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
100k
Scaling GitHub
holman
464
140k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
86
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
160
Six Lessons from altMBA
skipperchong
29
4.1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
The agentic SEO stack - context over prompts
schlessera
0
610
Transcript
"(*Ԭୈճ !ΤϯδχΞΧϑΣ
Φʔϓχϯά
ʮ൚༻ਓೳʢ"(*ʣʯͱʮಛԽܕਓೳʯ ൚༻ਓೳʢ˺ڧ͍"*ʣ ˠώτͷೳͷΑ͏ͳ൚༻ੑΛ࣋ͭ"* FHυϥ͑ΜɺమΞτϜͳͲ ಛԽܕਓೳʢ˺ऑ͍"*ʣ ˠݶఆతͳղܾਪ FHνΣεকعͷ"*ɺը૾ೝࣝͳͲ ࠷৽ͷ--.ͲͪΒʁ
"(*ͷొؒۙʁ 4*56"5*0/"-"8"3&/&44 ΑΓ IUUQTTJUVBUJPOBMBXBSFOFTTBJGSPNBHJ UPTVQFSJOUFMMJHFODF
ϊʔϕϧཧֶ © Johan Jarnestad/The Royal Swedish Academy of Sciences John
Hop fi eld and Geoffrey Hinton. Ill. Niklas Elmehed © Nobel Prize Outreach ͷϊʔϕϧཧֶɺ δϣϯɾ+ɾϗοϓϑΟʔϧυʢถࠃʣͱδΣϑϦʔɾ&ɾώϯτϯʢΧφμʣ͕ड
ϊʔϕϧཧֶ • डཧ༝ → ػցֶशͱਓχϡʔϥϧωοτϫʔΫͷج൫Λߏங͠ɺσʔλύλʔϯͷ هԱɾ࠶ݱΛՄೳʹͨ͠ޭɻ • ओͳۀ → ϗοϓϑΟʔϧυɿεϐϯܥͷཧֶͷݪཧΛԠ༻ͨ͠ʮϗοϓϑΟʔϧυ
ωοτϫʔΫʯΛ։ൃ͠ɺσʔλύλʔϯͷอଘͱ෮ݩΛ࣮ݱɻ → ώϯτϯɿʮϘϧπϚϯϚγϯʯΛ։ൃ͠ɺσʔλ͔ΒಛΛֶश͢Δٕज़ Λཱ֬ɻAIͱػցֶशͷඈ༂తͳਐలʹߩݙɻ • Өڹ → AIͱཧֶͷ༥߹ʹΑΔൃలΛଅਐ͠ɺԠ༻ͰͷՄೳੑΛେ͖֦͘େɻ
"(*Ԭͷҙٛ w "(*࣌ʹ͚ͯɺࠓ͔ΒͰ͖Δ͜ͱΛڞʹߟ͑ɺ ࣮ߦ͍ͯ͜͠͏ʂ
ӡӦऀհ w զ࠺ʢ4"*-BCגࣜձࣾʣ w ۙ౻ݑࣇʢגࣜձࣾελσΟετʣ w େ৴ߊʢ/0#%"5"גࣜձࣾʣ w ੨྄ʢςΠϧΠϯυגࣜձࣾʣ
දऀհ զ࠺ :VLJOBHB"[VNB !ZVLZ@B[ 4"*-BCגࣜձࣾදऔక w "*ؔ࿈ͷڭҭɺݚڀ w ཧֶത࢜ʢཧֶʣ w
๏େֶσβΠϯֶ෦݉ߨࢣ w 6EFNZͰສਓΛࢦಋ w ༗໊اۀͰ"*ݚमΛ୲ w ஶॻʹʮ͡ΊͯͷσΟʔϓϥʔχϯάʯͳͲ w झຯϒϥδϦΞϯॊज़"*Ξʔτ
ϋογϡλά BHJGVLVPLB
"(*Ԭ%JTDPSEίϛϡχςΟ
:PV5VCFϥΠϒ ʮ&OHJOFFSDBGF"(*ԬʯͰ:PV5VCFݕࡧ
ࠓճͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOO
ϗοϓϑΟʔϧυωοτϫʔΫͱʁ
δϣϯɾϗοϓϑΟʔϧυࢯͷհ ݚڀऀͱͯ͠ͷܦྺ • ੜ·ΕɺΞϝϦΧͷཧֶऀɾੜཧֶऀ • ϓϦϯετϯେֶͰཧֶΛઐ߈ʢ1I%ʣ • ΧϦϑΥϧχΞՊେֶɺϓϦϯετϯେֶͳͲͰڭ佃 • ཧֶ͔ΒਆܦՊֶݚڀྖҬΛ֦େ
• ෳࡶܥͷݚڀͰଟେͳޭ ओͳۀͱධՁ • ɿϗοϓϑΟʔϧυωοτϫʔΫΛఏҊ • ཧֶͷ֓೦Λ༻͍ͯχϡʔϥϧωοτΛཧԽ • ݱͷਂֶशͷཧతج൫Λங͍ͨઌۦऀͷҰਓ Ill. Niklas Elmehed © Nobel Prize Outreach
ϗοϓϑΟʔϧυωοτϫʔΫͷݩจ ถࠃՊֶΞΧσϛʔلཁʹܝࡌ IUUQTXXXQOBTPSHEPJQOBT
جຊΞʔΩςΫνϟ ωοτϫʔΫߏ • ͯ͢ͷχϡʔϩϯ͕૬ޓʹ݁߹ • ֤χϡʔϩϯํʹଓɺͨͩࣗ͠ݾ݁߹ଘࡏ͠ͳ͍ • ݁߹ͷॏΈରশతʢ ʣ •
χϡʔϩϯͷঢ়ଶࢄʢ ʣ·ͨೋʢ ʣ ಈ࡞ͷಛ • ΤωϧΪʔؔ ʹجͮ͘ঢ়ଶߋ৽ ◦ ɿχϡʔϩϯ ͷᮢʢόΠΞεʣ • ඇಉظతͳঢ়ଶߋ৽ʢҰʹͭͷχϡʔϩϯʣ • ہॴతͳใͷΈͰߋ৽அ • ΤωϧΪʔ࠷খԽʹΑΔ҆ఆঢ়ଶͷऩଋ • ཧֶͷεϐϯάϥεϞσϧͱྨࣅͨ͠ৼΔ͍ wij = wji si ∈ − 1, + 1 si ∈ 0,1 E = − 1 2 ∑ i,j wij si sj − ∑ i θi si θi i
ಈ࡞ݪཧ ঢ়ଶߋ৽ͷϝΧχζϜ • ֤χϡʔϩϯͷೖྗɿ • ߋ৽نଇɿ ࢄʢۃੑʣͷ߹ɿ ೋʢ୯ۃੑʣͷ߹ɿ
• ඇಉظతͳߋ৽ʢϥϯμϜʹબΜͩͭͷχϡʔϩϯΛߋ৽ʣ • ͯ͢ͷχϡʔϩϯ͕҆ఆ͢Δ·Ͱ܁Γฦ͠ hi = ∑ j wij sj + θi si = { +1 JG hi ≥ 0 −1 JG hi < 0 si = { 1 JG hi ≥ 0 0 JG hi < 0
ಈ࡞ݪཧ ΤωϧΪʔͱऩଋ • ΤωϧΪʔؔঢ়ଶߋ৽ʹΑΓ୯ௐݮগ • γεςϜඞͣہॴ࠷খʹऩଋ • ࠷ऴঢ়ଶॳظঢ়ଶʹґଘ • ΤωϧΪʔܗͷΠϝʔδɿ
◦ࢁʢෆ҆ఆঢ়ଶʣ͔Β୩ʢ҆ఆঢ়ଶʣ ◦ෳͷ҆ఆঢ়ଶʢہॴ࠷খʣ͕ଘࡏ ◦هԱύλʔϯ҆ఆঢ়ଶͷҰͭʹରԠ
ֶशͱهԱ ֶशʢॏΈͷܾఆʣ • ݁߹ՙॏͷֶशଇɿ ʢ ʣ ◦ ɿχϡʔϩϯ ◦ ɿهԱͤ͞Δύλʔϯ
◦ ɿύλʔϯ ʹ͓͚Δχϡʔϩϯ ͷঢ়ଶ • ҰͷܭࢉͰॏΈΛܾఆʢඇ෮తʣ • ੜֶతͳϔϒଇʹجͮ͘ هԱ༰ྔͱಛ • ཧతͳهԱ༰ྔɿ ◦ ݸͷχϡʔϩϯͰ ݸͷύλʔϯΛهԱՄೳ • ϊΠζΛؚΉೖྗ͔Βͷى͕Մೳ • ύλʔϯͷҰ෦͔ΒશମΛ࠶ߏ wij = 1 N ∑p μ=1 sμ i sμ j i ≠ j N p sμ i μ i pmax ≈ 0.14N N 0.14N
Ԡ༻ྫͱಛ දతͳԠ༻ྫ • ࿈هԱγεςϜ ◦ύλʔϯ෮ݩɾϊΠζআڈ ◦ෆશͳೖྗ͔Βͷى • Έ߹Θͤ࠷దԽ ◦८ճηʔϧεϚϯ ◦εέδϡʔϦϯά
རͱݶք • རɿฒྻॲཧ͕ՄೳɺϋʔυΣΞ࣮͕༰қ • ݶքɿهԱ༰ྔͷ੍ݶʢ ʣɺہॴղʹؕΔՄೳੑ 0.14N
ൃలͱӨڹ తͳൃల • ϘϧπϚϯϚγϯͷਐԽ ◦֬తͳৼΔ͍ͷಋೖɺӅΕͷՃ • ࿈ଓϞσϧͷ։ൃ ◦ΞφϩάχϡʔϩϯͷಋೖɺΑΓ๛͔ͳදݱೳྗͷ֫ಘ ݱͷӨڹ •
ཧֶͷݟͷ׆༻ ◦ΤωϧΪʔ࠷খԽʹΑΔֶश ◦֬తΞϓϩʔνͷجૅ
ϗοϓϑΟʔϧυωοτϫʔΫͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOOUSFFNBJOTFDUJPO@
ϘϧπϚϯϚγϯͱʁ
δΣϑϦʔɾώϯτϯࢯͷհ Ill. Niklas Elmehed © Nobel Prize Outreach ܦྺͱݚڀ •
ΠΪϦεੜ·ΕɺʮσΟʔϓϥʔχϯάͷʯ • τϩϯτେֶڭतɺ(PPHMF3FTFBSDIॴଐ • ೝ৺ཧֶ͔Βਓೳݚڀ • ਂֶशͷཧతجૅΛཱ֬ ओͳۀ • ޡࠩٯ๏ͷ࠶ൃݟʢʣ • %FFQ#FMJFG/FUXPSLͷఏҊʢʣ • νϡʔϦϯάडʢʣ • "*҆શੑͷܯʢʣ
ϘϧπϚϯϚγϯͷݩจ τϩϯτେֶͷΣϒαΠτʹܝࡌ IUUQTXXXDTUPSPOUPFEVdGSJU[BCTQTDPHTDJCNQEG
എܠͱੜ ։ൃͷഎܠ • ɺϗοϓϑΟʔϧυωοτϫʔΫͷݶք • ౷ܭྗֶʢϘϧπϚϯʣͷԠ༻Λண • )JOUPO4FKOPXTLJʹΑΔڞಉݚڀʢʣ • ֬తͳৼΔ͍ͷಋೖ
ओཁͳֵ৽ • ֬తͳχϡʔϩϯͷಋೖ • ԹύϥϝʔλʹΑΔ੍ޚ • ӅΕϢχοτͷಋೖ • ΤωϧΪʔ࠷খԽͱ֬తֶशͷ౷߹
جຊΞʔΩςΫνϟ ωοτϫʔΫߏ • ՄࢹͱӅΕͷߏ • ͯ͢ͷϢχοτ͕ؒํʹ݁߹ • ֬తͳঢ়ଶભҠɿ ◦
ɿঢ়ଶมԽʹ͏ΤωϧΪʔมԽ ◦ ɿԹύϥϝʔλ ΤωϧΪʔؔ • ◦ ɿϢχοτؒͷ݁߹ॏΈ ◦ ɿϢχοτͷঢ়ଶʢ·ͨʣ ◦ ɿόΠΞε߲ • Թ ʹΑͬͯঢ়ଶΛ੍ޚ p(si = 1) = 1 1 + e−ΔEi/T ΔEi T E = − ∑ i<j wij si sj − ∑ i θi si wij si θi T
ಈ࡞ϝΧχζϜ ঢ়ଶભҠͷΈ • ϘϧπϚϯʹै͏֬తͳঢ়ଶߋ৽ ◦ ◦ ɿؔ ɿશϢχοτͷঢ়ଶϕΫτϧ •
ΪϒεαϯϓϦϯάʹΑΔঢ়ଶભҠ ◦ϥϯμϜʹબΜͩϢχοτΛ֬తʹߋ৽ ◦ฏߧঢ়ଶʹ౸ୡ͢Δ·Ͱ܁Γฦ͠ Թ੍ޚͱ࠷దԽ • γϛϡϨʔςουΞχʔϦϯάͷར༻ ◦ߴԹ͔Β։࢝͠ɺঃʑʹԹΛԼ͛Δ ◦ہॴղճආͱେҬత࠷దԽ • ԹʹΑΔ୳ࡧɾऩଋͷ੍ޚ ◦ߴԹɿϥϯμϜͳ୳ࡧԹɿہॴతͳ࠷దԽ P(s) = 1 Z e−E(s)/T Z s
ֶशΞϧΰϦζϜ ֶशͷجຊࣜ • ॏΈߋ৽ଇɿ ◦ ɿֶश ◦ ɿσʔλͷظʢਖ਼૬ʣ ◦
ɿϞσϧͷظʢෛ૬ʣ ্࣮ͷ • ίϯτϥεςΟϒμΠόʔδΣϯεʢ$%ʣ๏ͷಋೖ ◦શͳऩଋΛͨͣʹֶश ◦গεςοϓͷαϯϓϦϯάͰ༻ • Թεέδϡʔϧͷઃఆ ◦ֶशॳظߴԹͰ୳ࡧతʹ ◦ֶशޙظԹͰऩଋΛଅਐ Δwij = η(⟨si sj ⟩data − ⟨si sj ⟩model ) η ⟨ ⋅ ⟩data ⟨ ⋅ ⟩model
ൃలͱԠ༻ Ϟσϧͷൃల • ੍ݶϘϧπϚϯϚγϯʢ3#.ʣͷߟҊ ◦ؒͷΈͷ݁߹ʹΑΔޮԽ ◦%FFQ#FMJFG/FUXPSLͷجૅʹ • %FFQ-FBSOJOHֵ໋ͷߩݙ ◦ਂֶशͷࣄલֶशख๏ͱͯ͠׆༻ ◦ੜϞσϧͷجຊ֓೦Λཱ֬
ϘϧπϚϯϚγϯͷίʔυ IUUQTHJUIVCDPNZVLJOBHBIPQ fi FME@CPMU[NBOOUSFFNBJOTFDUJPO@
Ԭͷ"(* Γ্͍͖͛ͯ·͠ΐ͏ʂ