Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Decomposable Neural Paraphrase Generation
Search
Yumeto Inaoka
July 23, 2019
Research
0
180
文献紹介: Decomposable Neural Paraphrase Generation
2019/07/23の文献紹介で発表
Yumeto Inaoka
July 23, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
130
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
170
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
120
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
120
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
93
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
210
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
270
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
180
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
yumeto
1
180
Other Decks in Research
See All in Research
ダイナミックプライシング とその実例
skmr2348
2
370
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
150
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
530
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
120
システムから変える 自分と世界を変えるシステムチェンジの方法論 / Systems Change Approaches
dmattsun
3
860
Practical The One Person Framework
asonas
1
1.6k
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
350
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
3
740
marukotenant01/tenant-20240916
marketing2024
0
490
大規模言語モデルのバイアス
yukinobaba
PRO
4
690
Weekly AI Agents News! 7月号 論文のアーカイブ
masatoto
1
210
Whoisの闇
hirachan
3
120
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
520
39k
RailsConf 2023
tenderlove
29
900
Embracing the Ebb and Flow
colly
84
4.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
How to Ace a Technical Interview
jacobian
276
23k
Writing Fast Ruby
sferik
627
61k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
GitHub's CSS Performance
jonrohan
1030
460k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Automating Front-end Workflow
addyosmani
1366
200k
Transcript
Decomposable Neural Paraphrase Generation
https://arxiv.org/abs/1906.09741
• • • •
• • •
•
• • •
• • •
• •
• • = [1 , … , ] • =
[1 , … , ]
• • • ℎ = BiLSTM( ; ℎ−1 , ℎ+1
) • = LSTM ℎ , −1 ; −1 • = GumbelSoftmax( , )
• • = − encoderz (, ) • 1:−1 ,
= − encoderz , 1:−1
• • 1:−1 , = σ 1:−1 , ( |1:−1
, )
• 0 , 1 • = LSTM 0 ; 1
; −1 ; −1 • 1:−1 , = GumbelSoftmax ,
• • ∗ = 0 ∗ = 1
• • ℒ = σ=1 log 1:−1 , + σ=1
log ∗ + σ=1 log ( ∗ 1:−1 ,
• • •
• •
•
• •
• •
• •
• •
• •
• • From 1(best) to 4(worst)
• • • • •