$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Decomposable Neural Paraphrase Generation
Search
Yumeto Inaoka
July 23, 2019
Research
0
230
文献紹介: Decomposable Neural Paraphrase Generation
2019/07/23の文献紹介で発表
Yumeto Inaoka
July 23, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
yumeto
1
230
Other Decks in Research
See All in Research
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
160
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
270
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
590
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
280
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
400
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
10k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
320
説明可能な機械学習と数理最適化
kelicht
2
610
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
560
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
110
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
130
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
1.5k
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Become a Pro
speakerdeck
PRO
30
5.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
The Cult of Friendly URLs
andyhume
79
6.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
690
It's Worth the Effort
3n
187
29k
RailsConf 2023
tenderlove
30
1.3k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Transcript
Decomposable Neural Paraphrase Generation
https://arxiv.org/abs/1906.09741
• • • •
• • •
•
• • •
• • •
• •
• • = [1 , … , ] • =
[1 , … , ]
• • • ℎ = BiLSTM( ; ℎ−1 , ℎ+1
) • = LSTM ℎ , −1 ; −1 • = GumbelSoftmax( , )
• • = − encoderz (, ) • 1:−1 ,
= − encoderz , 1:−1
• • 1:−1 , = σ 1:−1 , ( |1:−1
, )
• 0 , 1 • = LSTM 0 ; 1
; −1 ; −1 • 1:−1 , = GumbelSoftmax ,
• • ∗ = 0 ∗ = 1
• • ℒ = σ=1 log 1:−1 , + σ=1
log ∗ + σ=1 log ( ∗ 1:−1 ,
• • •
• •
•
• •
• •
• •
• •
• •
• • From 1(best) to 4(worst)
• • • • •