Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
190
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
150
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
190
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
140
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
120
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
230
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
300
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
200
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
200
Other Decks in Research
See All in Research
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
130
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
500
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
440
第79回 産総研人工知能セミナー 発表資料
agiats
3
200
LLM 시대의 Compliance: Safety & Security
huffon
0
590
セミコン地域における総合交通戦略
trafficbrain
0
110
Retrieval of Hurricane Rain Rate From SAR Images Based on Artificial Neural Network
satai
2
140
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
190
Segment Any Change
satai
2
210
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
2
150
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
320
The Economics of Platforms 輪読会 第1章
tomonatu8
0
140
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Rails Girls Zürich Keynote
gr2m
94
13k
The World Runs on Bad Software
bkeepers
PRO
67
11k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Making Projects Easy
brettharned
116
6k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Designing Experiences People Love
moore
140
23k
Code Review Best Practice
trishagee
67
18k
Six Lessons from altMBA
skipperchong
27
3.6k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21