Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
170
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
430
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
180
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
310
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
110
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
210
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
260
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
13
7.1k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
680
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
710
POI: Proof of Identity
katsyoshi
0
110
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
RailsConf 2023
tenderlove
30
1.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Six Lessons from altMBA
skipperchong
29
4.1k
Fireside Chat
paigeccino
41
3.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Code Reviewing Like a Champion
maltzj
527
40k
Agile that works and the tools we love
rasmusluckow
331
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Why Our Code Smells
bkeepers
PRO
340
57k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21