Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
220
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
10
4.2k
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
190
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
200
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
190
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
1.5k
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
260
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
540
Generative Models 2025
takahashihiroshi
25
13k
Cross-Media Information Spaces and Architectures
signer
PRO
0
240
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Side Projects
sachag
455
43k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Designing Experiences People Love
moore
142
24k
4 Signs Your Business is Dying
shpigford
184
22k
Designing for Performance
lara
610
69k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21