Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
180
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
130
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
170
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
120
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
120
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
93
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
210
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
270
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
180
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
180
Other Decks in Research
See All in Research
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
490
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
220
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
140
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
260
Generative Predictive Model for Autonomous Driving 第61回 コンピュータビジョン勉強会@関東 (後編)
kentosasaki
0
200
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
330
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
120
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
440
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
130
Global Evidence Summit (GES) 参加報告
daimoriwaki
0
140
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
700
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
490
Featured
See All Featured
Writing Fast Ruby
sferik
627
61k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
654
59k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Done Done
chrislema
181
16k
The Language of Interfaces
destraynor
154
24k
Ruby is Unlike a Banana
tanoku
96
11k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Code Reviewing Like a Champion
maltzj
520
39k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21