Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
190
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.4k
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
CoRL2025速報
rpc
3
3.6k
CVPR2025論文紹介:Unboxed
murakawatakuya
0
230
snlp2025_prevent_llm_spikes
takase
0
420
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
630
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.5k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
360
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Navigating Team Friction
lara
191
16k
The SEO identity crisis: Don't let AI make you average
varn
0
32
How to Ace a Technical Interview
jacobian
281
24k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
The Language of Interfaces
destraynor
162
25k
Visualization
eitanlees
150
16k
Building an army of robots
kneath
306
46k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.7k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.1k
Practical Orchestrator
shlominoach
190
11k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21