Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
220
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
160
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
220
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
280
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
110
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
180
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
500
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
15
9.8k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
180
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
440
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.9k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Building an army of robots
kneath
306
46k
Designing for Performance
lara
610
69k
RailsConf 2023
tenderlove
30
1.2k
We Have a Design System, Now What?
morganepeng
53
7.8k
Music & Morning Musume
bryan
46
6.8k
Scaling GitHub
holman
463
140k
Into the Great Unknown - MozCon
thekraken
40
2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Code Review Best Practice
trishagee
70
19k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21