Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
210
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
950
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
710
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.6k
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
590
NLP Colloquium
junokim
1
150
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
910
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
130
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.6k
業界横断 副業・兼業者の実態調査
fkske
0
160
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
100
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
Docker and Python
trallard
44
3.4k
Designing for humans not robots
tammielis
253
25k
Typedesign – Prime Four
hannesfritz
42
2.7k
Side Projects
sachag
455
42k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Agile that works and the tools we love
rasmusluckow
329
21k
RailsConf 2023
tenderlove
30
1.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21