Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Similarity-Based Reconstruction Loss for ...
Search
Yumeto Inaoka
May 26, 2019
Research
1
210
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
2019/05/28の文献紹介で発表
Yumeto Inaoka
May 26, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
160
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
140
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
220
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
230
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
Generative Models 2025
takahashihiroshi
21
11k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
670
Self-supervised audiovisual representation learning for remote sensing data
satai
3
210
RapidPen: AIエージェントによるペネトレーションテスト 初期侵入全自動化の研究
laysakura
0
1.4k
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
12
8k
データサイエンティストの就労意識~2015→2024 一般(個人)会員アンケートより
datascientistsociety
PRO
0
640
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
320
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
2.8k
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.6k
ことばの意味を計算するしくみ
verypluming
11
2.6k
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.4k
Practical Orchestrator
shlominoach
188
11k
Adopting Sorbet at Scale
ufuk
77
9.4k
How to Ace a Technical Interview
jacobian
277
23k
Bash Introduction
62gerente
614
210k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
RailsConf 2023
tenderlove
30
1.1k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
Similarity-Based Reconstruction Loss for Meaning Representation
Literature 2
Abstract • • • 3
Introduction • • 4
Related Work • • • • 5
Related Work • • 6
Auto-Encoder •ℒ , • • • • 7
Weighted similarity loss •ℒ = − σ =1 sim ,
• • • : • • sim() • 8
Weighted cross-entropy loss •ℒ = − σ =1 sim ,
log( ) • • 9
Soft label loss •ℒ = − σ =1 ∗log •
∗ = ൞ sim , σ =1 sim(,) , ∈ top N 0 , ∉ top N • • 10
True-label encoding 11
Tasks & Datasets • • • 12
Results 13
Results 14
Additional Experiments • • 15
Results • • 16
Results 17
Results 18
Results 19
Discussion • • 20
Conclusion • • • • 21