Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データチームの境界を考える
Search
Atsushi Sumita
June 16, 2022
Technology
0
940
データチームの境界を考える
ナウキャストのストリームアラインドチームと, チームAPIとしてのdbt導入の取り組みについて紹介しています.
Atsushi Sumita
June 16, 2022
Tweet
Share
More Decks by Atsushi Sumita
See All by Atsushi Sumita
Redshift Serverless vs Snowflake 徹底比較!
yummydum
1
2.3k
最強?のデータ組織アーキテクチャ
yummydum
2
560
データを開発するためのDataOps
yummydum
1
930
Jupyter Notebook Ops
yummydum
1
210
SNLP presentation 20190928
yummydum
0
330
Other Decks in Technology
See All in Technology
プロダクトエンジニア構想を立ち上げ、プロダクト志向な組織への成長を続けている話 / grow into a product-oriented organization
hiro_torii
1
220
Active Directoryハッキング
cryptopeg
1
110
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
1.1k
The Future of SEO: The Impact of AI on Search
badams
0
200
開発スピードは上がっている…品質はどうする? スピードと品質を両立させるためのプロダクト開発の進め方とは #DevSumi #DevSumiB / Agile And Quality
nihonbuson
2
3k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
25
7.2k
2024.02.19 W&B AIエージェントLT会 / AIエージェントが業務を代行するための計画と実行 / Algomatic 宮脇
smiyawaki0820
14
3.5k
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
720
Oracle Cloud Infrastructure:2025年2月度サービス・アップデート
oracle4engineer
PRO
1
220
抽象化をするということ - 具体と抽象の往復を身につける / Abstraction and concretization
soudai
20
8.1k
OpenID Connect for Identity Assurance の概要と翻訳版のご紹介 / 20250219-BizDay17-OIDC4IDA-Intro
oidfj
0
280
インフラをつくるとはどういうことなのか、 あるいはPlatform Engineeringについて
nwiizo
5
2.6k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Being A Developer After 40
akosma
89
590k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Become a Pro
speakerdeck
PRO
26
5.1k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
How to Ace a Technical Interview
jacobian
276
23k
Fireside Chat
paigeccino
34
3.2k
Transcript
© 2015 - 2022 Nowcast Inc. データチームの境界を考える 株式会社ナウキャスト 隅田 敦
1
© 2013 - 2022 Finatext Ltd. 2 目次 これまでのナウキャストのチーム構造 -
データエンジニアが主役となる組織 - チームトポロジー: Stream Aligned Team / Platform Team / チームAPI - Stream Aligned Data Engineering Teamによる効率的な開発 - 課題: チームAPIが整備されていないことによる非効率性 チーム境界とプラットフォームチーム - チームAPIとしてのdbt - Data hub platformに向けた取り組み - Platformチームは中央集権型のデータエンジニアチームではない
© 2013 - 2022 Finatext Ltd. 3 これまでのナウキャストのチーム構造
© 2013 - 2022 Finatext Ltd. 4 データエンジニアが主役となる組織 データの保有側・利用側の双方に価値を提供するAlternative Dataの
Two-Sided Platformを展開
© 2013 - 2022 Finatext Ltd. 5 チームトポロジー: Stream Aligned
Team / Platform Team / チームAPI • Stream Aligned Team ◦ 価値のデリバリーをend to endで担う ◦ 要求探索から本番運用まで他チームへの引き継ぎ無しで行える • Platform Team ◦ Stream Aligned Teamを支援する内部プロダクトの開発を担う ◦ インフラなど下位の機能を横断的に抽象化したツールを提供 • チームAPI ◦ チームとやり取りするための方法を記述した仕様 ◦ コードであれば, ランタイムのエンドポイント, ライブラリ, UI ◦ データの場合はどうか? これを考えるのが本発表の目的
© 2013 - 2022 Finatext Ltd. 6 The Bezos Mandate
(2002) 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog
© 2013 - 2022 Finatext Ltd. 7 Stream Aligned Data
Engineering Teamによる効率的な開発 ナウキャストのチームの特徴 • 典型的にはデータソース毎に1つのチーム ◦ 1チームだいたい3~6人ほど • 各チーム内で価値提供に必要な工程が完結 • Terraformによるインフラの構築 • Airflow+PythonによるETLの開発/保守 • Jupyter NotebookによるEDA Stream Alignedなデータエンジニアチーム Stream Alignedであることのメリット • システムのオーナーシップが向上する • 各システムが疎結合に保たれる (Conway's law) • データのドメイン知識が一貫して行き渡る
© 2013 - 2022 Finatext Ltd. 8 課題: チームAPIが整備されていないことによる非効率性 各チームの開発したデータには様々な利用者が存在
• 社内の金融領域に詳しいアナリスト • 社内の他のデータエンジニアリングチーム • ナウキャストのデータを購読している社外の顧客 課題: チームAPIが存在しない 以下項目の整備状況/実装方針がバラバラ • データの置き場所, フォーマット • 品質保証/バージョン管理/ビジネスメタデータ • データ更新の締切に関するSLO 認知負荷/コミュニケーションコストの増大
© 2013 - 2022 Finatext Ltd. 9 チーム境界とプラットフォームチーム
© 2013 - 2022 Finatext Ltd. 10 チームAPIとしてのdbt • yamlを書くだけでデータのテストとドキュメントが手に入る
• 今はsources [3]だけを使用 htmlに render 宣言的なデータのテスト 任意の項目を 追加可能
© 2013 - 2022 Finatext Ltd. 11 Data hub platformに向けた取り組み
チームAPIの下でデータをリリースする場所をdata hubと名付 け, 整備中 • データはs3にparquetで置き, Athenaで参照する • 各データについてdbtでsourcesを定義 • データ/sourcesが更新されたらテストを実行 • renderされたhtmlをs3にホスティング • dbtのmeta tagでSLOを管理 ◦ これを参照して監視システムがSLOをチェック data hubの開発を行うPlatform Teamが必要となる
© 2013 - 2022 Finatext Ltd. 12 Platformチームは中央集権型のデータエンジニアチームではない • 中央集権型はサイロ化やスケーラビリティの低
下に繋がるため望ましくない[2][3][4] • PlatformチームはData Hubへのリリースを支 援するツールの開発が責務 ◦ チームAPIの定義 ◦ ビルド/テスト/デプロイ用のスクリプト ◦ CI/CD用のツール ◦ 監視システム • 各Sourcesの開発/保守は各Stream Aligned Teamの責務
© 2013 - 2022 Finatext Ltd. 13 Reference [1] Team
Topologies [2] 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog [3] Sources | dbt Docs [4] How to Move Beyond a Monolithic Data Lake to a Distributed Data Mesh [5] Data Mesh Principles and Logical Architecture [6] Data Management at Scale
© 2013 - 2022 Finatext Ltd. 14 End