Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データチームの境界を考える
Search
Atsushi Sumita
June 16, 2022
Technology
0
860
データチームの境界を考える
ナウキャストのストリームアラインドチームと, チームAPIとしてのdbt導入の取り組みについて紹介しています.
Atsushi Sumita
June 16, 2022
Tweet
Share
More Decks by Atsushi Sumita
See All by Atsushi Sumita
Redshift Serverless vs Snowflake 徹底比較!
yummydum
1
2.2k
最強?のデータ組織アーキテクチャ
yummydum
2
540
データを開発するためのDataOps
yummydum
1
880
Jupyter Notebook Ops
yummydum
1
210
SNLP presentation 20190928
yummydum
0
320
Other Decks in Technology
See All in Technology
FlutterアプリにおけるSLI/SLOを用いたユーザー体験の可視化と計測基盤構築
ostk0069
0
110
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
3
630
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
490
Lambdaと地方とコミュニティ
miu_crescent
2
370
CysharpのOSS群から見るModern C#の現在地
neuecc
2
3.5k
心が動くエンジニアリング ── 私が夢中になる理由
16bitidol
0
100
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
強いチームと開発生産性
onk
PRO
35
11k
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
130
アプリエンジニアのためのGraphQL入門.pdf
spycwolf
0
100
Platform Engineering for Software Developers and Architects
syntasso
1
520
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
For a Future-Friendly Web
brad_frost
175
9.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Visualization
eitanlees
145
15k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
Facilitating Awesome Meetings
lara
50
6.1k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Transcript
© 2015 - 2022 Nowcast Inc. データチームの境界を考える 株式会社ナウキャスト 隅田 敦
1
© 2013 - 2022 Finatext Ltd. 2 目次 これまでのナウキャストのチーム構造 -
データエンジニアが主役となる組織 - チームトポロジー: Stream Aligned Team / Platform Team / チームAPI - Stream Aligned Data Engineering Teamによる効率的な開発 - 課題: チームAPIが整備されていないことによる非効率性 チーム境界とプラットフォームチーム - チームAPIとしてのdbt - Data hub platformに向けた取り組み - Platformチームは中央集権型のデータエンジニアチームではない
© 2013 - 2022 Finatext Ltd. 3 これまでのナウキャストのチーム構造
© 2013 - 2022 Finatext Ltd. 4 データエンジニアが主役となる組織 データの保有側・利用側の双方に価値を提供するAlternative Dataの
Two-Sided Platformを展開
© 2013 - 2022 Finatext Ltd. 5 チームトポロジー: Stream Aligned
Team / Platform Team / チームAPI • Stream Aligned Team ◦ 価値のデリバリーをend to endで担う ◦ 要求探索から本番運用まで他チームへの引き継ぎ無しで行える • Platform Team ◦ Stream Aligned Teamを支援する内部プロダクトの開発を担う ◦ インフラなど下位の機能を横断的に抽象化したツールを提供 • チームAPI ◦ チームとやり取りするための方法を記述した仕様 ◦ コードであれば, ランタイムのエンドポイント, ライブラリ, UI ◦ データの場合はどうか? これを考えるのが本発表の目的
© 2013 - 2022 Finatext Ltd. 6 The Bezos Mandate
(2002) 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog
© 2013 - 2022 Finatext Ltd. 7 Stream Aligned Data
Engineering Teamによる効率的な開発 ナウキャストのチームの特徴 • 典型的にはデータソース毎に1つのチーム ◦ 1チームだいたい3~6人ほど • 各チーム内で価値提供に必要な工程が完結 • Terraformによるインフラの構築 • Airflow+PythonによるETLの開発/保守 • Jupyter NotebookによるEDA Stream Alignedなデータエンジニアチーム Stream Alignedであることのメリット • システムのオーナーシップが向上する • 各システムが疎結合に保たれる (Conway's law) • データのドメイン知識が一貫して行き渡る
© 2013 - 2022 Finatext Ltd. 8 課題: チームAPIが整備されていないことによる非効率性 各チームの開発したデータには様々な利用者が存在
• 社内の金融領域に詳しいアナリスト • 社内の他のデータエンジニアリングチーム • ナウキャストのデータを購読している社外の顧客 課題: チームAPIが存在しない 以下項目の整備状況/実装方針がバラバラ • データの置き場所, フォーマット • 品質保証/バージョン管理/ビジネスメタデータ • データ更新の締切に関するSLO 認知負荷/コミュニケーションコストの増大
© 2013 - 2022 Finatext Ltd. 9 チーム境界とプラットフォームチーム
© 2013 - 2022 Finatext Ltd. 10 チームAPIとしてのdbt • yamlを書くだけでデータのテストとドキュメントが手に入る
• 今はsources [3]だけを使用 htmlに render 宣言的なデータのテスト 任意の項目を 追加可能
© 2013 - 2022 Finatext Ltd. 11 Data hub platformに向けた取り組み
チームAPIの下でデータをリリースする場所をdata hubと名付 け, 整備中 • データはs3にparquetで置き, Athenaで参照する • 各データについてdbtでsourcesを定義 • データ/sourcesが更新されたらテストを実行 • renderされたhtmlをs3にホスティング • dbtのmeta tagでSLOを管理 ◦ これを参照して監視システムがSLOをチェック data hubの開発を行うPlatform Teamが必要となる
© 2013 - 2022 Finatext Ltd. 12 Platformチームは中央集権型のデータエンジニアチームではない • 中央集権型はサイロ化やスケーラビリティの低
下に繋がるため望ましくない[2][3][4] • PlatformチームはData Hubへのリリースを支 援するツールの開発が責務 ◦ チームAPIの定義 ◦ ビルド/テスト/デプロイ用のスクリプト ◦ CI/CD用のツール ◦ 監視システム • 各Sourcesの開発/保守は各Stream Aligned Teamの責務
© 2013 - 2022 Finatext Ltd. 13 Reference [1] Team
Topologies [2] 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog [3] Sources | dbt Docs [4] How to Move Beyond a Monolithic Data Lake to a Distributed Data Mesh [5] Data Mesh Principles and Logical Architecture [6] Data Management at Scale
© 2013 - 2022 Finatext Ltd. 14 End