Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:∞-former: Infinite Memory Transformer
Search
yuri
September 20, 2022
Research
0
420
論文紹介:∞-former: Infinite Memory Transformer
第14回最先端NLP勉強会(2022年9月26日、27日)@お茶大 発表用資料
yuri
September 20, 2022
Tweet
Share
More Decks by yuri
See All by yuri
データ指向モデリング「テキストマイニングの基礎」
yuri00
0
15
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri00
0
620
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
160
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
430
Other Decks in Research
See All in Research
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
[チュートリアル] 電波マップ構築入門 :研究動向と課題設定の勘所
k_sato
0
250
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
910
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
130
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
2026.01ウェビナー資料
elith
0
210
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
110
Featured
See All Featured
Between Models and Reality
mayunak
1
190
Building a Scalable Design System with Sketch
lauravandoore
463
34k
The agentic SEO stack - context over prompts
schlessera
0
640
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
RailsConf 2023
tenderlove
30
1.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
110
A Tale of Four Properties
chriscoyier
162
24k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
190
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Transcript
∞-former: Infinite Memory Transformer Pedro Henrique Martins, Zita Marinho, André
F. T. Martins ACL 2022 お茶大 村山友理
Prior Work • ⻑いcontext をどう扱えば良いか︖ 2 Transformer Layer 𝑋! STM
q k,v ... Transformer Layer 𝑋! STM CM q k,v ... Compressive Transformer [Rae+ 2019] Transformer-XL [Dai+ 2019]
Infinite Memory Transformer • 過去の⼊⼒系列を連続値にして扱う 3
Long-term Memory • ⼊⼒Xに畳み込み(stride=1, width=3)をし、スムージングを⾏う Lはinput size, eはembedding size •
Xを連続値 ! 𝑋(𝑡)に変換 𝑡 ∈ 0, 1 : 𝑡! = 𝑖/𝐿 𝜓 𝑡 ∈ ℝ"はN個のRBF (radial basis function) のベクトル B ∈ ℝ"×$は多変量リッジ回帰によって得られる係数⾏列 4
Long-term Memory 𝑄 = 𝑋𝑊" ∈ ℝ#×% 𝐾 = 𝐵𝑊&
∈ ℝ'×% 𝑉 = 𝐵𝑊( ∈ ℝ'×% • attention mechanism としてガウス分布を⽤いる 5
Long-term Memory • 𝑧),+ は𝑍#,-,) ∈ ℝ#×.の⾏を成す • Transformerのcontext vector
𝑍, と⾜し合わせて最終的なcontext vector 𝑍を得る 6 ← attention × value
Unbounded Memory 7 • ! 𝑋(𝑡)を圧縮 • ! 𝑋(𝑡)から𝑀個のベクトルを等間隔にサンプリング
Sticky Memories • 重要な部分のメモリを積極的に保存したほうが良いのでは︖ • 前ステップのattentionからヒストグラムを作成し、D個の等間隔なbinに分割 {𝑑/, … , 𝑑0}
• 各binについてattention probability 𝑝(𝑑1 )を計算 • 𝑝に従ってM個をサンプリング 8
Complexity • Key matrix 𝐾 は基底関数の数𝑁 だけに依存し、contextの⻑さとは無関係 • Complexityもcontextの⻑さとは独⽴ •
short-term memory も使う場合︓ • LTMのみの場合︓ • どちらもvanilla transformer より⼩さい 9
Sorting • 系列のトークンを頻度順に並べる • モデルが直近のトークンだけでなく⻑期記憶も⾒ているか調べるために、 トークンの確率分布を変化させていく • 系列が⻑くなるほど𝛼 ∈ [0,1]は0から1に徐々に増加
• vocabulary size 20 • 4,000, 8,000, 16,000トークンで実験 10
Sorting • Transformer • 3 layers • 6 attention heads
• input size L = 1,024 • memory size 2,048 • LTM (N = 1,024 basis functions) 11
Document Grounded Dialogue • CMU Document Grounded Conversation dataset (CMU-DoG)
[Zhou+ 2018] • より難しくするために、会話が始まる前にしかdocumentにアクセスできなくする • GPT-2 small + continuous LTM (N = 512 basis functions) 12
Document Grounded Dialogue 13
Document Grounded Dialogue 14
LTMのアテンションの層による違い 15
16
17
18
19
まとめ • Infinite Memory Transformer を提案 • Unbounded context •
計算量はcontextの⻑さと独⽴ • Sorting, Language modeling, Document grounded dialogue で実験 • ⻑期記憶の有⽤性を⽰した 20