Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:∞-former: Infinite Memory Transformer
Search
yuri
September 20, 2022
Research
0
400
論文紹介:∞-former: Infinite Memory Transformer
第14回最先端NLP勉強会(2022年9月26日、27日)@お茶大 発表用資料
yuri
September 20, 2022
Tweet
Share
More Decks by yuri
See All by yuri
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri00
0
600
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
150
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
400
Other Decks in Research
See All in Research
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
610
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
320
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
300
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
240
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
180
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.8k
20250725-bet-ai-day
cipepser
2
420
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
1
100
投資戦略202508
pw
0
560
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
A Tale of Four Properties
chriscoyier
160
23k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Automating Front-end Workflow
addyosmani
1370
200k
4 Signs Your Business is Dying
shpigford
184
22k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Gamification - CAS2011
davidbonilla
81
5.4k
Transcript
∞-former: Infinite Memory Transformer Pedro Henrique Martins, Zita Marinho, André
F. T. Martins ACL 2022 お茶大 村山友理
Prior Work • ⻑いcontext をどう扱えば良いか︖ 2 Transformer Layer 𝑋! STM
q k,v ... Transformer Layer 𝑋! STM CM q k,v ... Compressive Transformer [Rae+ 2019] Transformer-XL [Dai+ 2019]
Infinite Memory Transformer • 過去の⼊⼒系列を連続値にして扱う 3
Long-term Memory • ⼊⼒Xに畳み込み(stride=1, width=3)をし、スムージングを⾏う Lはinput size, eはembedding size •
Xを連続値 ! 𝑋(𝑡)に変換 𝑡 ∈ 0, 1 : 𝑡! = 𝑖/𝐿 𝜓 𝑡 ∈ ℝ"はN個のRBF (radial basis function) のベクトル B ∈ ℝ"×$は多変量リッジ回帰によって得られる係数⾏列 4
Long-term Memory 𝑄 = 𝑋𝑊" ∈ ℝ#×% 𝐾 = 𝐵𝑊&
∈ ℝ'×% 𝑉 = 𝐵𝑊( ∈ ℝ'×% • attention mechanism としてガウス分布を⽤いる 5
Long-term Memory • 𝑧),+ は𝑍#,-,) ∈ ℝ#×.の⾏を成す • Transformerのcontext vector
𝑍, と⾜し合わせて最終的なcontext vector 𝑍を得る 6 ← attention × value
Unbounded Memory 7 • ! 𝑋(𝑡)を圧縮 • ! 𝑋(𝑡)から𝑀個のベクトルを等間隔にサンプリング
Sticky Memories • 重要な部分のメモリを積極的に保存したほうが良いのでは︖ • 前ステップのattentionからヒストグラムを作成し、D個の等間隔なbinに分割 {𝑑/, … , 𝑑0}
• 各binについてattention probability 𝑝(𝑑1 )を計算 • 𝑝に従ってM個をサンプリング 8
Complexity • Key matrix 𝐾 は基底関数の数𝑁 だけに依存し、contextの⻑さとは無関係 • Complexityもcontextの⻑さとは独⽴ •
short-term memory も使う場合︓ • LTMのみの場合︓ • どちらもvanilla transformer より⼩さい 9
Sorting • 系列のトークンを頻度順に並べる • モデルが直近のトークンだけでなく⻑期記憶も⾒ているか調べるために、 トークンの確率分布を変化させていく • 系列が⻑くなるほど𝛼 ∈ [0,1]は0から1に徐々に増加
• vocabulary size 20 • 4,000, 8,000, 16,000トークンで実験 10
Sorting • Transformer • 3 layers • 6 attention heads
• input size L = 1,024 • memory size 2,048 • LTM (N = 1,024 basis functions) 11
Document Grounded Dialogue • CMU Document Grounded Conversation dataset (CMU-DoG)
[Zhou+ 2018] • より難しくするために、会話が始まる前にしかdocumentにアクセスできなくする • GPT-2 small + continuous LTM (N = 512 basis functions) 12
Document Grounded Dialogue 13
Document Grounded Dialogue 14
LTMのアテンションの層による違い 15
16
17
18
19
まとめ • Infinite Memory Transformer を提案 • Unbounded context •
計算量はcontextの⻑さと独⽴ • Sorting, Language modeling, Document grounded dialogue で実験 • ⻑期記憶の有⽤性を⽰した 20