Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
意外と簡単!「この商品を買った人はこんな商品も買っています」を作ってみよう
Search
yuta ishizaka
September 08, 2016
Technology
3
760
意外と簡単!「この商品を買った人はこんな商品も買っています」を作ってみよう
勉強会資料です。
テストデータなどはイベント開催ページにて。
http://d-cube.connpass.com/event/39131/
yuta ishizaka
September 08, 2016
Tweet
Share
More Decks by yuta ishizaka
See All by yuta ishizaka
ProductZine webiner資料
yutaishizaka
0
57
s-dev talks #2 〜チームビルディング〜 LT資料
yutaishizaka
3
640
業務ハックのためのPFDのすゝめ
yutaishizaka
1
310
スタートアップ2人目エンジニアのリアル
yutaishizaka
2
460
product_kaizen_night
yutaishizaka
1
660
Other Decks in Technology
See All in Technology
Azure & DevSecOps
kkamegawa
2
180
Kaigi Effect 2025 #rubykaigi2025_after
sue445
0
110
LLM アプリケーションのためのクラウドセキュリティ - CSPM の実装ポイント-
osakatechlab
0
380
AIにおけるソフトウェアテスト_ver1.00
fumisuke
1
370
地に足の付いた現実的な技術選定から魔力のある体験を得る『AIレシート読み取り機能』のケーススタディ / From Grounded Tech Choices to Magical UX: A Case Study of AI Receipt Scanning
moznion
2
750
MCPが変えるAIとの協働
knishioka
1
150
LINE 購物幕後推手
line_developers_tw
PRO
0
430
自動化の第一歩 -インフラ環境構築の自動化について-
smt7174
1
120
本当に必要なのは「QAという技術」だった!試行錯誤から生まれた、品質とデリバリーの両取りアプローチ / Turns Out, "QA as a Discipline" Was the Key!
ar_tama
9
4.1k
20 Years of Domain-Driven Design: What I’ve Learned About DDD
ewolff
1
320
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
110
Serverlessだからこそコードと設計にはこだわろう
kenichirokimura
2
950
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Scaling GitHub
holman
459
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
BBQ
matthewcrist
88
9.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
840
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
We Have a Design System, Now What?
morganepeng
52
7.6k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Designing for humans not robots
tammielis
253
25k
Transcript
株式会社ビズリーチ 1 意外と簡単! 「この商品を買った人はこんな商品も 買っています」を作ってみよう
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
2
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
3 Amazon
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
4
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
5 YouTube
Copyright © 2016 BizReach Inc. All Right Reserved. 6
これを作ります
Copyright © 2016 BizReach Inc. All Right Reserved. アジェンダ
• ⾃自⼰己紹介 • レコメンドとは – 代表的なレコメンド⼿手法 • 作ってみよう – 環境作り – 実際に作ってみる 7
Copyright © 2016 BizReach Inc. All Right Reserved. ⾃自⼰己紹介
名前: ⽯石坂優太 職歴: 2008/4-‐‑‒2015/5 パイオニア(PM、アーキテクト) 2015/5-‐‑‒now ビズリーチ(企業向けサービスのグロース) スキル: C++, Java, Python, Rails, iOSApp, etc... 8
Copyright © 2016 BizReach Inc. All Right Reserved. ⾃自⼰己紹介
9
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドとは
• レコメンド(recommend)とは? 10
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドとは
• レコメンド(recommend)とは? 11 おすすめする
Copyright © 2016 BizReach Inc. All Right Reserved. 有名なレコメンド
• Amazon – ある商品を買った⼈人に、おすすめ商品を表⽰示することで、更更なる購⼊入を誘う – テンション・リダクション効果を狙っている • YouTube – ある動画を観た⼈人に、おすすめ動画を表⽰示することで、更更に視聴を促す 12
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの効果
• 趣味嗜好に合わせた選択肢を提⽰示するので、コンバージョン率率率が⾼高い – 特に協調フィルタリングは好みを考慮するので効果が⾼高い • 利利⽤用者が思いつかない選択肢を提⽰示できる – 検索索では、利利⽤用者が思いつく選択肢にしかたどり着けない 13
Copyright © 2016 BizReach Inc. All Right Reserved. 代表的なレコメンドの⼿手法
• コンテンツ(内容)ベース – テキスト情報や属性情報などの内容で近さを評価し、内容が近いものをオ ススメする • 協調フィルタリング – 購⼊入者同⼠士の好みの類似性で近さ評価し、好みが近い⼈人が好きな商品をレ コメンドする 14
Copyright © 2016 BizReach Inc. All Right Reserved. 代表的なレコメンドの⼿手法
• コンテンツ(内容)ベース – テキスト情報や属性情報などの内容で近さを評価し、内容が近いものをオ ススメする • 協調フィルタリング – 購⼊入者同⼠士の好みの類似性で近さ評価し、好みが近い⼈人が好きな商品をレ コメンドする → AmazonやYouTubeは基本的にこっち 15
Copyright © 2016 BizReach Inc. All Right Reserved. コンテンツベース
16 ・新宿に住んでいる ・好きな食べものジャンルにカレーを登録している 新宿の飲み屋グループ 新宿のカレー屋グループ 原宿のカレー屋グループ ↓お店の情報をあらかじめ分析してグルーピング
Copyright © 2016 BizReach Inc. All Right Reserved. コンテンツベース
17 ・新宿に住んでいる ・好きな食べものジャンルにカレーを登録している 新宿の飲み屋グループ 新宿のカレー屋グループ 原宿のカレー屋グループ
Copyright © 2016 BizReach Inc. All Right Reserved. コンテンツベース
18 ・新宿に住んでいる ・好きな食べものジャンルにカレーを登録している 新宿の飲み屋グループ 新宿のカレー屋グループ 原宿のカレー屋グループ 内容が近いのでオススメする
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
19
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
20 購入!
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
21 同じものを買った!
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
22 こっちは買ってない
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
23 おすすめする
Copyright © 2016 BizReach Inc. All Right Reserved. 作ってみよう
• AmazonやYouTubeで使われている「協調フィルタリング」のレコメンド を作ります – 近さの評価の仕⽅方は⾊色々ありますが、⼀一番シンプルなやつをつくりま す • Pythonで作ります – Pythonはデータ分析系のライブラリが充実しているので、レコメンド や機械学習に向いている 24
Copyright © 2016 BizReach Inc. All Right Reserved. 開発環境を作る
• Windowsの場合 http://qiita.com/koara-‐‑‒local/items/8d48d0306c85c61aed97 ※⼿手順4で pip install pandas もやる 25
Copyright © 2016 BizReach Inc. All Right Reserved. 開発環境を作る
• Macの場合 1. pythonのバージョン確認 python -‐‑‒-‐‑‒version 2. jupyterのインストール sudo pip install jupyter 3. pandasのインストール sudo pip install pandas 4. jupyter起動 jupyter notebook 26
Copyright © 2016 BizReach Inc. All Right Reserved. 実際に作ってみる
• とあるECサイトのユーザーのAさんが買い物をした時に、オススメの商品を5件表⽰示 する 27 購入! おすすめ!
Copyright © 2016 BizReach Inc. All Right Reserved. 実際に作ってみる
1. 購⼊入履履歴データを読み込む testdata.csv を⽤用意しました。 2. 購⼊入履履歴データを各お客さんごとにまとめる 後の計算をわかりやすくするためにデータを整形します。 {“Aさん” : [“商品A”, “商品B”, “商品C”], “Bさん” : [“商品B”]・・・} のようなデータに整形します。 3. レコメンドしたい対象(Aさん)とその他の共起数をとる 共起数 = 購⼊入したものが⼀一致している数 4. 共起数が⾼高い順にオススメとして表⽰示する 購⼊入したものの⼀一致数が多いほど、好みが近いため、優先的に表⽰示しましょう。 28
Copyright © 2016 BizReach Inc. All Right Reserved. testdata.csv
29
Copyright © 2016 BizReach Inc. All Right Reserved. ⾏行行動データの読み込み
30 conversionsには、 [(‘Aさん’,’商品A’), (‘Aさん’, ‘商品B’), (‘Bさん’, ‘商品C’), (‘Bさん’, ‘商品G’)・・・] のようなデータが入ってきます。 これを {“Aさん” : [“商品A”,“商品B”], “Bさん” : [“商品B”,“商品C”]・・・} のようなデータに一度変換します。
Copyright © 2016 BizReach Inc. All Right Reserved. 共起
31 1個被ってる ので、共起1 2個被ってる ので、共起2
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法
• 協調フィルタリングの弱点 – 特定の商品が集中してレコメンドされやすい • 誰からも好みと思われなかった商品はレコメンドされない • Amazonのようなレコメンドでは、商品数が無制限なので、ひとつの商品が集中 してレコメンドされても問題にならない(みんな買える) • Pairsのような⼈人材マッチングだと問題になる(1000⼈人の⼥女女性に1⼈人のモテ男性を 薦めても、マッチング成⽴立立するのは1⼈人だけなので、効率率率が悪いし、成⽴立立しない マッチングを薦めるのは顧客体験を損ねる) – ⾏行行動をベースにするので、⾏行行動がなければレコメンドできない • つまり、新規のお客さんにはレコメンドできないので、⼯工夫が必要 → コールドスタート問題 と⾔言います 32
Copyright © 2016 BizReach Inc. All Right Reserved. 付録
• Pythonのデータ分析等でよく使うライブラリ – Numpy – scikit-‐‑‒learn 33