Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pandasによる競馬データの分析
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
anonaka
July 06, 2017
Research
3
2.2k
Pandasによる競馬データの分析
Pandasとmatplotlibを使って競馬の馬の走るスピードを分析をしてみました。結論は、ドメイン知識は重要ということです。:-)
anonaka
July 06, 2017
Tweet
Share
More Decks by anonaka
See All by anonaka
Introduction to the data analysis using python
anonaka
0
1.1k
Rubyで電話をかける
anonaka
0
520
PyCon APAC 2017へ行こう!
anonaka
0
740
PythonでSlack Bot
anonaka
0
1.1k
Other Decks in Research
See All in Research
データサイエンティストの業務変化
datascientistsociety
PRO
0
190
[チュートリアル] 電波マップ構築入門 :研究動向と課題設定の勘所
k_sato
0
210
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
950
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
財務諸表監査のための逐次検定
masakat0
0
240
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
300
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
230
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
670
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
300
20年前に50代だった人たちの今
hysmrk
0
130
Featured
See All Featured
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
710
Music & Morning Musume
bryan
47
7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
4 Signs Your Business is Dying
shpigford
187
22k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
300
Designing for Performance
lara
610
70k
Between Models and Reality
mayunak
1
170
Transcript
1BOEBTʹΑΔڝഅσʔλੳ גࣜձࣾ909;0 த
ࣗݾհ w 909;0ΤόϯδΣϦετ w ۭඈͿ1ZUIPOϓϩάϥϚ
909;0 w ిɺ4.4ͷ8FC"1*Λఏڙ͍ͯ͠·͢ w ΦϑΟεͳ͠ w શһ͕ϦϞʔτϫʔΫ
ಈػ w ͦͷੲɺڝഅ༧ͷ8FCαʔϏεΛͭͬͨ͘ w ͔͠͠ڝഅૉਓ w 1BOEBTͷ࿅श
ڝഅσʔλੳ w +"37"/͔Βσʔλ͕औΕΔ w ༗ྉαʔϏε w ڝഅͷσʔλʔͦͦ͜͜ੵ͕͋Δ w Ҏ্ͷ+3"ެࣜσʔλ
·ͣഅͷεϐʔυΛ
None
ԾઆΛཱͯΔ w ͘ΕർΕΔͩΖ͏ w ̎࣍ଟ߲ࣜͰճؼੳ
None
ଞͷௐͯΈΔ
None
None
Ͳ͏Βɺڑ͕৳ͼΔͱ͕ૣ͘ ͳΔͷීวతͷΑ͏ͩ
ڝഅυϝΠϯͷΤΩεύʔτʹॿ͚ΛٻΊΔ
ΤΩεύʔτͷΞυόΠε w ͍Ζ͍ΖͳڝഅͷσʔλΛɺ·ͱΊͯൺΔͷ ཚ w ઢۂ͕Γ֯ͷ͞ΈΜͳҧ͏ɻࡔ͋ͬͨΓ ͢Δɻ
ڝഅ͝ͱʹੳ ·ͣ౦ژڝഅ͔Β
None
Ծઆূ໌͞Εͨ
શࠃͷڝഅΛௐΔ
͔͠͠ɺྫ͕ଓʑʜ
None
None
࣍ͷΒ͖ͭ ਖ਼ͷϨʔε Լʹತ ෛͷϨʔε ্ʹತ
ڝഅͷίʔεਤΛ ோΊͯΈΔ ʢ͗͢ʜʣ
౦ژڝഅ
ژڝഅ
ࡕਆڝഅ
தࢁڝഅ
–؏Ҫ ॣ (AlphaImpact։ൃऀ) τϥοΫͷछྨ ࣳɾμʔτɾো ڑ͕ҧ͑ผͷڝٕ
͕࣍ܭࢉͰ͖ͳ͍έʔε ৽ׁڝഅɹμʔτ
ֶΜͩ͜ͱ w Ͳ͏ΒഅNఔͰർΕͳ͍Β͍͠ w υϝΠϯࣝॏཁ
ࢀߟจݙ தҪӻ࢘ஶ *5ΤϯδχΞͷͨΊͷػցֶशཧೖ ٕज़ධࣾ
ࠓޙͷ՝ w ͍͔ʹͯ͠ճऩΛʹ͍͔ͬͯ͘
͔͜͜Βઌ༗ྉձһ༷ݶఆ ͱͳΓ·͢ʢӕʣ
None