, 所望の特徴ベクトル次元 • 出⼒: 各データの特徴ベクトル 1. カーネル関数の(逆)フーリエ変換を計算 2. から 個のパラメタをサンプリング 3. 各データ について特徴ベクトルを得る © 2019, Retrieva, Inc. All rights reserved. w1, ..., wD i.i.d. ⇠ p(w) <latexit sha1_base64="C2DCyoAXUNKaPrHKCKwjtIp7CDA=">AAACk3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvolccb6ujp6emUx7soxOSDlKaWVMeUpFaUVGfqZeql6NXWVscUZ+bWFmiUa3LFCygb6BmAgQImwxDKUGaAgoB8geUMMQwpDPkMyQylDLkMqQx5DCVAdg5DIkMxEEYzGDIYMBQAxWIZqoFiRUBWJlg+laGWgQuotxSoKhWoIhEomg0k04G8aKhoHpAPMrMYrDsZaEsOEBcBdSowqBpcNVhp8NnghMFqg5cGf3CaVQ02A+SWSiCdBNGbWhDP3yUR/J2grlwgXcKQgdCF180lDGkMFmC3ZgLdXgAWAfkiGaK/rGr652CrINVqNYNFBq+B7l9ocNPgMNAHeWVfkpcGpgbNZgBFgCF6cGMywoz0DI31jAJNlB2coFHBwSDNoMSgAQxvcwYHBg+GAIZQoL1TGHYxHGY4wiTKZM3kxOQCUcrECNUjzIACmHwB1y6arw==</latexit> x1, ..., xn 2 Rm <latexit sha1_base64="TnOY48l35AEZxr3G+/nHHP+2eLk=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIV8Qb6ijo6enpKFTE5ynEZAJxbmJJRlJSdVBtXC5XvICygZ4BGChgMgyhDGUGKAjIF1jOEMOQwpDPkMxQypDLkMqQx1ACZOcwJDIUA2E0gyGDAUMBUCyWoRooVgRkZYLlUxlqGbiAekuBqlKBKhKBotlAMh3Ii4aK5gH5IDOLwbqTgbbkAHERUKcCg6rBVYOVBp8NThisNnhp8AenWdVgM0BuqQTSSRC9qQXx/F0Swd8J6soF0iUMGQhdeN1cwpDGYAF2aybQ7QVgEZAvkiH6y6qmfw62ClKtVjNYZPAa6P6FBjcNDgN9kFf2JXlpYGrQbAZQBBiiBzcmI8xIz9BYzyjQRNnBCRoVHAzSDEoMGsDwNmdwYPBgCGAIBdrbyrCaYQvDViY2Jh0mYyZTiFImRqgeYQYUwGQHAOwek60=</latexit> 2D <latexit sha1_base64="kiV/HxuMbsz5A+fbngaucw+BFlM=">AAACZXichVHLSsNAFD2Nr1qtrQ9EcGGxKK7KtAqKq6IuXPZhH1BLSeK0hqZJSNJCLf6AuFUXrhRExM9w4w+46BeIuKzgxoW3aUC0qHeYmTNn7rlzZkYyVMWyGWt7hIHBoeER76hvbNw/EQhOTmUtvW7KPCPrqm7mJdHiqqLxjK3YKs8bJhdrkspzUnW7u59rcNNSdG3Pbhq8WBMrmlJWZNEmKhXbKQXDLMKcCPWDqAvCcCOhB2+xjwPokFFHDRwabMIqRFjUCoiCwSCuiBZxJiHF2ec4ho+0dcrilCESW6WxQquCy2q07ta0HLVMp6jUTVKGsMSe2B3rsEd2z17Yx6+1Wk6NrpcmzVJPy41S4GQu/f6vqkazjcMv1Z+ebZSx4XhVyLvhMN1byD194+iik95MLbWW2TV7Jf9XrM0e6AZa402+SfLUJXz0AdGfz90PsrFIdDUSS66F41vuV3gxj0Ws0HuvI45dJJChc8s4xRnOPc+CX5gRZnupgsfVTONbCAufGTuKBA==</latexit> s(x1), ..., s(xn) 2 R2D <latexit sha1_base64="QQOl/GMSCQhsbBVE+1U0wHeCWJ0=">AAACinichVFNSxtBGH6y2mqjrVEvBS/BkKIgy2wU1HqRmoNHjSYKxobdddTB/WJ3ErRL/kD7A3rwpCAinry2Ry/+AQ/+BPEYwYsH390siIr6DjPzzDPv884zM4ZniUAydpVSOjo/fOzq/pTu6f38pS/TP1AJ3Lpv8rLpWq6/augBt4TDy1JIi696Ptdtw+Irxs5ctL/S4H4gXGdZ7nl83da3HLEpTF0SVcvkg5HdmjY6pqrqWASd0WxVONmqrcttwwhLzZ9hodisZXJMZXFkXwItATkkseBmjlHFBlyYqMMGhwNJ2IKOgNoaNDB4xK0jJM4nJOJ9jibSpK1TFqcMndgdGrdotZawDq2jmkGsNukUi7pPyizy7JKdsBa7YKfsmt2/WiuMa0Re9mg22lru1fp+f126e1dl0yyx/ah607PEJqZir4K8ezET3cJs6xu//raWvpfy4Td2yG7I/wG7Yud0A6dxax4t8tI+0vQB2vPnfgkqBVUbVwuLE7nZH8lXdGMIwxih957ELOaxgDKd+wdn+If/Sq9SUKaVmXaqkko0g3gSSvEBjKOWKA==</latexit> p(w) = 1 (2⇡)m Z e iw>z k(z)dz <latexit sha1_base64="ZWsXwK8r3/sZzWUBNb4Dc+DMYWA=">AAACpnichVFNT9RAGH6ooriIrHIx8dK4wXQPbKaricaEBPXiyfDhsiSUXdoyi5Ptx6SdXcI2/QP+AQ+eNDHE+DO8cOEohJ9gOGLihQNvu00IEOBtOvO8z7zPO8/MONITsWLscES7dXv0zt2xe6Xx+xMPJssPHy3HYS9yecMNvTBaceyYeyLgDSWUx1dkxG3f8XjT6b7L1pt9HsUiDD6qbcnXfHszEB3h2oqodvmNNLaq+qxudSLbTcw0MeqWFNWWn1oiULoV+QlPW8mMsIRKttKWpUKpD9Is6xqDaroxaJcrrMby0C8DswAVFDEflndgYQMhXPTggyOAIuzBRkzfKkwwSOLWkBAXERL5OkeKEml7VMWpwia2S+MmZasFG1Ce9YxztUu7ePRHpNQxzf6wn+yY7bJf7C87ubJXkvfIvGzT7Ay1XLYnPz9e+n+jyqdZ4dOZ6lrPCh28yr0K8i5zJjuFO9T3B1+Ol14vTifP2Hd2RP6/sUP2m04Q9P+5Pxb44leU6AHMi9d9GSzXa+bzWn3hRWXubfEUY3iCpzDovl9iDu8xjwbtu4M97ONAM7QPWkNrDku1kUIzhXOhrZ8CGE+jZg==</latexit> p(w) <latexit sha1_base64="VTQmHLOSWoIB8pRvlVI6Eo+hU/o=">AAACZ3ichVFNLwNBGH66vqo+WiTSxAVNhUszi4Q4CRfHFkWCyO4a7cR+ZXdaqcYfcHCtxIlERPwMF3/AwU8QRxIXB+9uNxEavJOZeeaZ93nnmRndNYUvGXuKKW3tHZ1d8e5ET29ffzI1MLjhOxXP4EXDMR1vS9d8bgqbF6WQJt9yPa5Zusk39cPlYH+zyj1fOPa6rLl819JKtjgQhiYDyp08mtpLZViOhTHaCtQIZBBF3kndYAf7cGCgAgscNiRhExp8attQweASt4s6cR4hEe5znCBB2gplccrQiD2ksUSr7Yi1aR3U9EO1QaeY1D1SjiLLHtkte2UP7I49s49fa9XDGoGXGs16U8vdveRpeu39X5VFs0T5S/WnZ4kDzIdeBXl3Qya4hdHUV48br2sLq9n6BLtiL+T/kj2xe7qBXX0zrgt89QIJ+gD153O3go3pnDqTmy7MZhaXoq+IYwTjmKT3nsMiVpBHkc4t4wwNnMeelaQyrKSbqUos0gzhWyhjn+n1ito=</latexit> D <latexit sha1_base64="8eSQWchmR3f/b2eGJyudXC45MVg=">AAACZHichVFNSwJBGH7cvswsLQmCICQxOsloQdFJqkNHP/IDTGR3m2xx3V12V8GkP1DXokOngojoZ3TpD3TwDwTR0aBLh17XhSip3mFmnnnmfd55ZkYyVMWyGet4hKHhkdEx77hvwj85FQhOz+QtvWHKPCfrqm4WJdHiqqLxnK3YKi8aJhfrksoLUm2rt19octNSdG3Xbhm8XBermnKgyKJNVHq7EoywGHMiPAjiLojAjZQevMUe9qFDRgN1cGiwCasQYVErIQ4Gg7gy2sSZhBRnn+MYPtI2KItThkhsjcYqrUouq9G6V9Ny1DKdolI3SRlGlD2xO9Zlj+yevbCPX2u1nRo9Ly2apb6WG5XAyVz2/V9VnWYbh1+qPz3bOMC641Uh74bD9G4h9/XNo4tudiMTbS+xa/ZK/q9Yhz3QDbTmm3yT5plL+OgD4j+fexDkE7H4SiyRXo0kN92v8GIei1im915DEjtIIUfncpziDOeeZ8EvhITZfqrgcTUhfAth4ROPmonI</latexit> xi <latexit sha1_base64="xSkKUs5rpr3tXin1AlN0bIQMSp0=">AAACZnichVFNLwNBGH66vou2iJC4NBri1LwtCXESLo60WhKk2V3TmnS7u9ndNmj8AYkrBycSEfEzXPwBh/4D4liJi4O3200EwTuZmWeeeZ93npnRbEO6HlEjpHR0dnX39PaF+wcGI9HY0HDetaqOLnK6ZVjOlqa6wpCmyHnSM8SW7Qi1ohliUyuvtPY3a8JxpWVueIe22K2oJVMWpa56TGUPCrIQS1CS/Ij/BKkAJBDEmhW7wQ72YEFHFRUImPAYG1DhcttGCgSbuV3UmXMYSX9f4Bhh1lY5S3CGymyZxxKvtgPW5HWrpuurdT7F4O6wMo4peqRbatID3dEzvf9aq+7XaHk55Flra4VdiJ6MZ9/+VVV49rD/qfrTs4ciFnyvkr3bPtO6hd7W147Om9nFzFR9mq7ohf1fUoPu+QZm7VW/XheZC4T5A1Lfn/snyKeTqdlken0usbQcfEUvJjCJGX7veSxhFWvI8bklnOIM56EnJaKMKmPtVCUUaEbwJZT4B9PJitg=</latexit> s(xi) = 1 p D (cos(w> 1 xi), sin(w> 1 xi), ..., cos(w> D xi), sin(w> D xi))> <latexit sha1_base64="Yd2D/7O4AMrmX70azRmEfsYTJQ4=">AAAC1HichVFNS+NAGH4bP7ertrqXBS/FolSQMFFBEQRxe9ijH9sqGA3JOK1D0yRmplU39rTsZQ979bCnFUTEn+HFP+DBnyAeK3jYPfgmDfhR1Ddk5pnnfZ533pmxPJsLSch1Quno7Oru6f2Q/NjXP5BKDw4VhVvzKStQ13b9dcsUzOYOK0gubbbu+cysWjZbsypfwvxanfmCu843eeCxzapZdniJU1MiZaRdkds3+Pi8XvJNGmiNQBe7vgzyjUZOp5jcM7QtXbpeJlRN6II7LyhVVSdiZb5d+YQaj6CRzhKVRJFpB1oMshDHkps+BR22wQUKNagCAwckYhtMEPhtgAYEPOQ2IUDOR8SjPIMGJNFbQxVDhYlsBccyrjZi1sF1WFNEboq72Pj76MzAKLkiZ6RJLsk5uSH/X60VRDXCXg5wtlpe5hmpX59X7991VXGWsPPoerNnCSWYjXrl2LsXMeEpaMtf/37UXJ1bGQ3GyDG5xf7/kmtygSdw6nf0ZJmt/IEkPoD28rrbQXFS1abUyeXp7MJi/BS9MAwjkMP7noEF+ApLUMB9r+BfojPRpRSVQ+WH8rMlVRKx5xM8C+X3AyL7siA=</latexit> k(x, y) = (x y) <latexit sha1_base64="kCncEYjEc4Vv+NXPunQURcF9l6o=">AAACeHichVHLSsNAFD2N7/po1Y3gJliqLWiZVkERBNGNS1+tgkpJ4rQOTZOQpMVY/AF/wIULURAVP8ONP+DCTxCXCoK48CYNiIp6h5k5c+aeO2dmVEsXjsvYQ0RqaW1r7+jsinb39PbF4v0DBces2RrPa6Zu2puq4nBdGDzvClfnm5bNlaqq8w21sujvb9S57QjTWHc9i+9UlbIhSkJTXKKK8cFKan/cS8tz8ra1J1L7E146WownWIYFIf8E2RAkEMayGb/ENnZhQkMNVXAYcAnrUOBQ20IWDBZxO2gQZxMSwT7HIaKkrVEWpwyF2AqNZVpthaxBa7+mE6g1OkWnbpNSRpLds2v2zO7YDXtk77/WagQ1fC8ezWpTy61i7Gho7fVfVZVmF3ufqj89uyhhJvAqyLsVMP4ttKa+fnD8vDa7mmyMsnP2RP7P2AO7pRsY9RftYoWvnsD/gOz35/4JCrlMdjKTW5lKzC+EX9GJYYwgRe89jXksYRl5OtfDKa5wHXmTZGlMSjdTpUioGcSXkHIfPDuP1Q==</latexit> 15