Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
qeMLパッケージの紹介
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
bob3bob3
December 15, 2023
Science
0
2.4k
qeMLパッケージの紹介
caretやtidymodelsと同じような機械学習のラッパーqeMLパッケージの紹介
bob3bob3
December 15, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
800
RでPSM分析
bob3bob3
1
410
Rでコンジョイント分析 2024年版
bob3bob3
0
2.2k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
630
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
560
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
630
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
630
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
810
Other Decks in Science
See All in Science
検索と推論タスクに関する論文の紹介
ynakano
1
150
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
210
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
190
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
150
Accelerated Computing for Climate forecast
inureyes
PRO
0
150
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
230
データマイニング - ノードの中心性
trycycle
PRO
0
340
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
160
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
150
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
150
やるべきときにMLをやる AIエージェント開発
fufufukakaka
2
1.1k
Featured
See All Featured
Abbi's Birthday
coloredviolet
1
4.8k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.2k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
GitHub's CSS Performance
jonrohan
1032
470k
Leo the Paperboy
mayatellez
4
1.4k
Amusing Abliteration
ianozsvald
0
110
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
200
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
59
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
350
Transcript
qeMLパッケージの紹介 R研究集会2023 (2023/12/16) @bob3bob3
qeMLパッケージとは? • caret、mlr3、tidymodelsと同じような、機械 学習に統一的なインターフェイスを提供する ラッパー。 • 「qe」は「quick and easy」。 •
とにかくシンプルで「 one liner」で機械学習を 事項できるのが売り。
作者 Norman Matloff The Art of R Programming (2011) の著者。
実行例 library(qeML) # メジャーリーガーのデータセット。ポジション、身長、体重、年齢 data(mlb1) # 体重を推定するモデル # 決定木、ランダムフォレスト、勾配ブースティング mlb1_rpart
<- mlb1 |> qeRpart("Weight") mlb1_rf <- mlb1 |> qeRFranger("Weight") mlb1_gb <- mlb1 |> qeGBoost("Weight")
実行例 # 推定 new_data <- data.frame(Position='Catcher', Height=73, Age=28) mlb1_rpart |>
predict(new_data) mlb1_rf |> predict(new_data) mlb1_gb |> predict(new_data) # これだけ! # 簡単だね!
Enjoy?
いやいや、まてまて • バリデーションは? • ハイパーパラメーターのチューニングは?
バリデーションは勝手にやってくれる # testデータでのMAE mlb1_rpart$testAcc mlb1_rf$testAcc mlb1_gb$testAcc data.frame( name = c("rpart",
"rf", "gb"), MAE = list(mlb1_rpart, mlb1_rf, mlb1_gb) |> map_dbl(\(x) pluck(x, "testAcc")) ) |> arrange(MAE) # name MAE # 1 rf 13.23741 # 2 gb 13.74169 # 3 rpart 14.24358
チューニングもできる # ランダムフォレストのグリッドサーチ例 qs_ft_rf <- mlb1 |> qeFT( "Weight", "qeRFranger",
pars = list(nTree= seq(100, 1000, 250), minNodeSize= seq(10, 30, 10)), nTst = 100, nXval = 10, showProgress=TRUE ) qs_ft_rf$outdf |> slice_min(meanAcc) # nTree minNodeSize meanAcc CI bonfCI # 1 350 10 8.326976 8.531146 8.653432
その他の機能 • 次元縮約、次元削減 • 並列化 • 欠損補完 • モデルの比較 •
Quick Start, ML Overviewなど親切なビネットがたくさん! • データセットも山盛り
……ただし • まだまだ開発中で発展途上。 • ドキュメントも書きかけという感じ。 • 実装されている手法がcaret、tidymodelsと比べるとまだ少ない。 • 実装が不完全な手法もある(xgboost, lightgbmなど)
• バリデーションの評価指標を変更ができない • Macだとインストールできないらしい(誰か検証して!)
Enjoy!