Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
Search
bob3bob3
June 08, 2024
Programming
0
680
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
『改訂新版前処理大全』のR言語版サンプルコードとApache parquetによる高速化の話。 #TokyoR
bob3bob3
June 08, 2024
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RでPSM分析
bob3bob3
1
190
Rでコンジョイント分析 2024年版
bob3bob3
0
750
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
470
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
410
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
500
qeMLパッケージの紹介
bob3bob3
0
1.6k
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
480
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
600
Redditで遊ぼう #TokyoR 106
bob3bob3
0
650
Other Decks in Programming
See All in Programming
Jakarta EE meets AI
ivargrimstad
0
140
2024/11/8 関西Kaggler会 2024 #3 / Kaggle Kernel で Gemma 2 × vLLM を動かす。
kohecchi
5
910
受け取る人から提供する人になるということ
little_rubyist
0
230
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
890
AWS IaCの注目アップデート 2024年10月版
konokenj
3
3.3k
AWS Lambdaから始まった Serverlessの「熱」とキャリアパス / It started with AWS Lambda Serverless “fever” and career path
seike460
PRO
1
260
どうして僕の作ったクラスが手続き型と言われなきゃいけないんですか
akikogoto
1
120
LLM生成文章の精度評価自動化とプロンプトチューニングの効率化について
layerx
PRO
2
190
카카오페이는 어떻게 수천만 결제를 처리할까? 우아한 결제 분산락 노하우
kakao
PRO
0
110
シェーダーで魅せるMapLibreの動的ラスタータイル
satoshi7190
1
480
Quine, Polyglot, 良いコード
qnighy
4
640
AI時代におけるSRE、 あるいはエンジニアの生存戦略
pyama86
6
1.1k
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
520
39k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Building Your Own Lightsaber
phodgson
103
6.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Being A Developer After 40
akosma
86
590k
Typedesign – Prime Four
hannesfritz
40
2.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Transcript
『改訂新版前処理大全』の話と Apache Parquet の話 Tokyo.R #113 2024/06/08 @bob3bob3
『改訂新版前処理大全』 • 2018年に発売されてデータ分析界隈で 大きな話題となった『前処理大全』のアッ プデート版。 • データサイエンスに取り組む上で欠かせ ない前処理の効率的な処理方法を網羅 的に習得できる構成。 •
サンプルデータがApache Parquet形式 で提供されているのも特徴。 • 旧版ではR、Python、SQLを用いた実装 方法を紹介していたが、改訂新版では BigQuery準拠のSQL、最新バージョンの Pandas、Rの代わりに高速なPolarsに変 更しました。
『改訂新版前処理大全』 Rの代わりに高 速なPolarsに変 更しました。
というわけで、Rで『改訂新版前処理大全』 のサンプルコードを書いています。
例1
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 reservation(200万件、11列) hotel(5千件、39列)
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 reservation(200万件、11列) hotel(5千件、39列)
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")
|> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join( hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" )
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")
|> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) reservationとhotelをすべて結合してから条件指定によってデータの抽出を行っている。 また必要な列に絞らずhotelマスターのすべての列を出力している。
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join(
hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" ) reservationとhotelそれぞれを必要な行と列に絞ってからjoinしている。
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 Awesomeなコードの方が中央値で6倍 ぐらい速い。 joinする前にそれぞれのデータをできる 限り小さくしておくこと!
Apache Parquet による前処理の高速化
Apache Parquet による前処理の高速化 • Apache Parquet はオープンソースの列指向データファイルフォーマットで、効率的 なデータの保存と検索のために設計されています。 • 複雑なデータを一括処理するための高性能な圧縮とエンコード方式を提供し、多く
のプログラミング言語と分析ツールでサポートされています。 • Rではarrowパッケージで Apache Parquet を扱うことができます。
Apache Parquet による前処理の高速化 # データフレームとして reservation_df <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet" )
# Arrow Table として reservation_at <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet", as_data_frame = FALSE ) parquet形式のデータをarrowパッケージのread_parquet()関数で読み込む。 デフォルトではデータフレームとして読み込まれるが、引数に as_data_frame = FALSE を付けるとArrow Tableとして読み込まれる。
Apache Parquet による前処理の高速化 # データフレームの処理 reservation_df |> dplyr::filter(status != "canceled")
|> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) # Arrow Table の処理 reservation_at |> dplyr::filter(status != "canceled") |> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) |> collect() #この処理が加わっただけ ホテルごと顧客ごとの予約数の集計処理。 Arrow Table も tidyverse で処理できるが、最後に collect()を実行することで結果が得られる。
Apache Parquet による前処理の高速化 中央値で約35倍の速さ! Tidyverseのすべての機能が ApacheParquetで使えるわけではない ようですが、積極的に使っていきましょ う! eitsupiさんの以前の発表やuriboさんの 資料もご参考に。
Apache Parquet の資料 @eitsupi さん @uribo さん https://eitsupi.github.io/tokyorslide/tokyor_97 https://uribo.quarto.pub/hello-r-arrow/
例2
例2)予約履歴データに対象キャンペーン情報を付与 reservation(200万件、11列) campaign(30件、3列)
例2)予約履歴データに対象キャンペーン情報を付与 reservation(200万件、11列) campaign(30件、3列)
例2)予約履歴データに対象キャンペーン情報を付与 # Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >=
starts_at & reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) # Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date = list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date)
# Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >= starts_at
& reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) 例2)予約履歴データに対象キャンペーン情報を付与 予約履歴にキャンペーンマスターをクロス結合、その後キャンペーン期間の行のみを抽 出。最後に不要な列を削除。
# Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date =
list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date) 例2)予約履歴データに対象キャンペーン情報を付与 キャンペーンマスターにキャンペーン期間のすべての日付の列を追加。 日付をキーに予約履歴にキャンペーンマスターを結合。
例2)予約履歴データに対象キャンペーン情報を付与 Awesomeなコードの方がおよそ6倍速い!
全編はこちらで順次公開予定 https://morimotoosamu.github.io/awesomebook_v2/
Enjoy!