Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Software Transactional Memory
Search
Bucharest FP
February 25, 2016
Programming
0
340
Software Transactional Memory
Bucharest FP
February 25, 2016
Tweet
Share
More Decks by Bucharest FP
See All by Bucharest FP
The Curry-Howard-Lambek Correspondence
bucharestfp
3
820
An Applicative Application
bucharestfp
0
9.9k
Composition in FP
bucharestfp
0
340
Formal Design, Implementation and Verification of Blockchain Languages and Virtual Machines
bucharestfp
1
570
PureScript & Halogen
bucharestfp
1
410
A Simple Sudoku Solver in Haskell
bucharestfp
0
1.1k
DeviceGraph — Clustering Devices into People at Adobe with Apache Spark
bucharestfp
0
270
Functional Programming Inception
bucharestfp
0
410
Equational Reasoning in Programming
bucharestfp
0
880
Other Decks in Programming
See All in Programming
Bedrock AgentCore ObservabilityによるAIエージェントの運用
licux
8
560
変化を楽しむエンジニアリング ~ いままでとこれから ~
murajun1978
0
670
Workers を定期実行する方法は一つじゃない
rokuosan
0
140
なぜあなたのオブザーバビリティ導入は頓挫するのか
ryota_hnk
5
560
「リーダーは意思決定する人」って本当?~ 学びを現場で活かす、リーダー4ヶ月目の試行錯誤 ~
marina1017
0
110
中級グラフィックス入門~効率的なメッシュレット描画~
projectasura
4
2.4k
抽象化という思考のツール - 理解と活用 - / Abstraction-as-a-Tool-for-Thinking
shin1x1
1
930
商品比較サービス「マイベスト」における パーソナライズレコメンドの第一歩
ucchiii43
0
270
QA x AIエコシステム段階構築作戦
osu
0
240
Vibe coding コードレビュー
kinopeee
0
410
ZeroETLで始めるDynamoDBとS3の連携
afooooil
0
150
AWS Summit Japan 2024と2025の比較/はじめてのKiro、今あなたは岐路に立つ
satoshi256kbyte
1
260
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Designing for humans not robots
tammielis
253
25k
Raft: Consensus for Rubyists
vanstee
140
7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
A better future with KSS
kneath
238
17k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Building Adaptive Systems
keathley
43
2.7k
Transcript
Software-Transactional Memory in Haskell (an overview of the implementation)
Let's start with WHY
FACT: Many modern applications have increasingly stringent concurrency requirements
FACT: Commodity multicore systems are increasingly affordable and available
FACT: The design and implementation of correct, efficient, and scalable
concurrent software remains a daunting task
Haskell to the rescue! Meet STM
STM protects shared state in concurrent programs
STM provides a more user-friendly and scalable alternative to locks
by promoting the notion of memory transactions as first-class citizens
Transactions, like many of the best ideas in computer science,
originated in the data engineering world
Transactions are one of the foundations of database technology
Full-fledged transactions are defined by the ACID properties Memory transactions
use two of them (A+I)
Transactions provide atomicity and isolation guarantees
Strong atomicity means all-or-nothing
Strong isolation means freedom from interference by other threads
Recall that Haskell is a strictly-typed, lazy, pure functional language
Pure means that functions with side-effects must be marked as
such
The marking is done through the type system at compile
time
STM is just another kind of I/O (with a different
marker: "STM a" instead of "IO a")
Transactional memory needs to be declared explicitly as TVar
The STM library provides an STM-to-IO converter called "atomically"
Transactional memory can only be accessed through dedicated functions like
"modifyTVar", "readTVar", "writeTVar" which can only be called inside STM blocks
Implementation Overview Of GHC's STM
Definition A transaction memory is a set of tuples in
the shape of (Identity,Version,Value) The version number represents the number of times the value has changed.
The Transactional Record Every STM transaction keeps a record of
state changes (similar to the tx log in the DB world)
STM performs all the effects of a transaction locally in
the transactional record
Once the transaction has finished its work locally, a version-based
consistency check determines if the values read for the entire access set are consistent
This version-based consistency check also obtains locks for the write
set and with those locks STM updates the main memory and then releases the locks
Rolling back the effects of a transaction means forgetting the
current transactional record and starting again
Reading: When a readTVar is attempted STM first searches the
tr. record for an existing entry
Reading: If the entry is found, STM will use that
local view of the TVar
Reading: On the first readTVar, a new entry is allocated
and the TVar value is read and stored locally
Reading: The original Tvar does not need to be accessed
again for its value until validation time
Writing: Writing to a Tvar requires that the variable first
be in the tr. record
Writing: If it is not currently in the tr. record,
a readTVar is performed and the value is stored in a new entry
Writing: The version in this entry will be used at
validation time to ensure that no updates were made concurrently to this TVar
Writing: The value is stored locally in the tr. record
until commit time
Validation: Before a transaction can make its effects visible to
other threads it must check that it has seen a consistent view of memory while it was executing
Validation: This is done by checking that TVars hold their
expected values (version comparison)
Validation: During validation, STM fetches the version numbers for all
TVars and checks that they are consistent with its expectations
Validation: STM then acquires locks for the write set in
ascending order of memory address
Validation: STM then reads and checks all version numbers again
Validation: If the version numbers are again consistent with its
expectations, STM allows the commit to happen
Committing: The desired atomicity is guaranteed by: • Validation having
witnessed all TVars with their respective expected values • Locks being held for all of the TVars in the write set
Committing: STM proceeds to increment each locked TVar's num_updates (a.k.a.
version) field
Committing: STM then writes the new values into the respective
current_value fields, and releases the locks
Committing: While these updates happen one-by-one, any attempt to read
from this set will spin while the lock is held
Another useful STM abstraction is the TChan, an unbounded FIFO
channel
Once some messages are transferred into a TChan, they are
ready to be consumed by other threads (broadcasting is possible too)
TChans are useful when threads need to send signals to
each other, as opposed to just accessing shared state
Compile your STM code with: ghc -threaded program.hs When running
the program: ./program +RTS -N
Follow me on GitHub github.com/dserban