Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TGS Salt Identification Challenge 12th place so...
Search
catla
November 30, 2018
Research
3
11k
TGS Salt Identification Challenge 12th place solution
catla
November 30, 2018
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
220
ベイズ深層学習(6.2)
catla
3
230
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
290
ベイズ深層学習(5.1~5.2)
catla
0
230
ベイズ深層学習(4.1)
catla
0
450
ベイズ深層学習(3.3~3.4)
catla
19
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
23回アルゴリズムコンテスト 1位解法
catla
6
670
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
580
Other Decks in Research
See All in Research
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
980
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
270
超高速データサイエンス
matsui_528
1
170
Submeter-level land cover mapping of Japan
satai
3
460
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
660
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
870
IMC の細かすぎる話 2025
smly
2
710
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
850
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
380
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
180
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
150
Featured
See All Featured
Visualization
eitanlees
150
16k
Practical Orchestrator
shlominoach
190
11k
How to train your dragon (web standard)
notwaldorf
97
6.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Making Projects Easy
brettharned
120
6.4k
It's Worth the Effort
3n
187
28k
Six Lessons from altMBA
skipperchong
29
4k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
BBQ
matthewcrist
89
9.9k
For a Future-Friendly Web
brad_frost
180
10k
Music & Morning Musume
bryan
46
6.9k
Transcript
5(44BMU*EFOUJpDBUJPO$IBMMFOHF 5FBN-FBSOJOHUIF'VUVSF UIQMBDFTPMVUJPO DBUMB ,BHHMFNFFUVQ LBHHMF@UPLZP
ࣗݾհ ໊લܡɹঘً 5XJUUFS!LBUTVSB@KQ ॴଐஜେֶɹใֶ܈ɹใՊֶྨɹ ϓϩάϥϛϯάྺ ઐ߈ແ͠ ͦͷଞ
ࠓճ͕,BHHMFॳઓ
νʔϜհ
ίϯϖͷ֓ཁ ը૾͔ΒԘؚ͕·Ε͍ͯΔ෦ΛృΓֆ͢Δίϯϖ ηϚϯςΟοΫηάϝϯςʔγϣϯ *OQVUσʔλάϨʔεέʔϧը૾ Y σʔλ EFQUIσʔλը૾ͷਂ͞ใ 5SBJOJOHEBUBTFUຕ 5FTUEBUBTFUຕ ࢀՃνʔϜ
UFBNT σʔλαΠζ͕খ͍͞ ظؒɿd
wධՁࢦඪ w *P6 JOUFSTFDUJPOPWFSVOJPO ίϯϖͷ֓ཁ w͔ͬͨ͠ wॎʹਨͳϚεΫͷ༧ଌਫ਼
1VCMJD-#UI
1SJWBUF-#UI
4PMVUJPO 6/FUϕʔε
4PMVUJPO
4PMVUJPO 6/FU
4PMVUJPO d#BTF&ODPEFSd DBUMB 3FT/F9U MZBLB 3FT/FU BMVQ
3FT/FU 3FT/F9U DPTUBT 3FT/FU PVSBOPT %FOTF/FU USJBO 3FT/FU
4PMVUJPO .BY1PPMJOH $POWE TUSJEFT *OQVUTJ[F Y Y
4PMVUJPOd&ODPEFSd #BDLCPOF#MPDL #BDLCPOF#MPDL Y D D
I X D (MPCBMQPPMJOH %FOTF 3FMV %FOTF 4JHNPJE
4PMVUJPOd&ODPEFSd #BDLCPOF#MPDL #BDLCPOF#MPDL Y Y I X D (MPCBMQPPMJOH %FOTF
D D 3FMV %FOTF 4JHNPJE $POWE LFSOFMTJ[F PVUDIBOOFM 4JHNPJE I X I X D
4PMVUJPOdDFOUFSd $POWE #/ 3FMV $POW % $POWE #/ 3FMV $POWE
#/ 3FMV $POW % $POW % $POW % %%FMBUJPO
4PMVUJPOd%FDPSEFSd $POWE #/ 3FMV $POWE #/ 3FMV Y Y
D D $POWE LFSOFMTJ[F PVUDIBOOFM 4JHNPJE I X I X D $POWE #/ 3FMV $POWE #/ 3FMV I X D (MPCBMQPPMJOH %FOTF 3FMV %FOTF 4JHNPJE
4PMVUJPO -PTT 'PDBM-PTT -PWBT[MPTT BDUJWBUJPO3FMVPSFMV 0QUJNJ[FS "EBN NPNFOUVN4(%
4PMVUJPO )ZQFSDPMNO
4PMVUJPO ɾQTFVEPMBCFMJOH ɾ4OBQ4IPU&OTFNCMJOH ɾ'BTU(FPNFUSJD&OTFNCMJOH
4PMVUJPO
4PMVUJPO -PTT
4PMVUJPOd1PTU1SPDFTTJOHd
4PMVUJPOd1PTU1SPDFTTJOHd
4PMVUJPOd1PTU1SPDFTTJOHd 1VCMJD-# 1SJWBUF-#ʹɺ ӨڹΛ༩͑ͳ͔ͬͨ
͓ΘΓʹ 5XJUUFS աڈͷίϯϖ 2JJUB (JU)VC .FEJVN 4MJEFTIBSF BS9JW ຊ FUDʜ
ͲΜͲΜ׆༻͠Α͏ʂ ᩦཉʹ୳ͤ༗༻ͳใ͕͝Ζ͝Ζམͪͯ ·͢ɻࠓճͷίϯϖͰɺ͜ΕΒΛಛʹ׆ ༻͍ͯ͠·ͨ͠ɻͥͻࢀߟʹ