Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
23回アルゴリズムコンテスト 1位解法
Search
catla
December 19, 2019
Research
6
660
23回アルゴリズムコンテスト 1位解法
2019年12月19日に大分大学で開かれたPRMU研究会における発表資料になります。
catla
December 19, 2019
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
200
ベイズ深層学習(6.2)
catla
3
210
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
260
ベイズ深層学習(5.1~5.2)
catla
0
210
ベイズ深層学習(4.1)
catla
0
420
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
540
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Research
See All in Research
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
480
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
150
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
710
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
140
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
58
23k
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
420
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
400
機械学習による言語パフォーマンスの評価
langstat
6
860
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
170
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
23
5.4k
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
460
コミュニティドライブプロジェクト
smartfukushilab1
0
120
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
How GitHub (no longer) Works
holman
312
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
960
The Language of Interfaces
destraynor
155
24k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Code Review Best Practice
trishagee
65
17k
What's in a price? How to price your products and services
michaelherold
244
12k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Building an army of robots
kneath
302
45k
Transcript
ճΞϧΰϦζϜίϯςετ Ґ ղ๏ ஜେֶ ใֶ܈ ใՊֶྨ ஜେֶώϡʔϚϯίϯϐϡςʔγϣϯݚڀࣨ ॴଐ OBPLJLBUTVSB!IDPNQDTUTVLVCBBDKQ
ܡ ঘً 13.6ݚڀձ!େେֶ
ίϯςετ֓ཁ ίϯςετͷظؒɿ d ʢϲ݄ʣ ՝༰ɿ ( + 48 &
+ 3!%!% '(")accuracy* + $#+ 119,997 &#+ 16,387 1+ 388,146
લॲཧ
લॲཧ 標準正規分布の確率密度関数 を[-1, 1]の区間で等間隔で サンプリングしたベクトル。 二値化画像を横に合計を取っ たベクトルを見ると、文字部 分は山状になっている。
Ϟσϧͷશମ૾
݁Ռ 手元で評価( Cross validation )した時の認識率は、 ResNet < OctConv ResNet <
DenseNet < Inception-v4 < SE-ResNeXt となった。 モデル 認識率 OctConv ResNet50( 事前学習無し ) 89.59% SE-ResNeXt101( 事前学習有り ) 90.23% アンサンブル (SE-ResNeXt, DenseNet, Inception-v4) 90.63% 順位 最終結果のスコア 1 位 90.63% 2 位 89.35% 3 位 88.95%
Random CropやRandom Shiftといった基本的な Augmentationに加え、分割位置に対してロバストにな るように前処理によって得られた分割位置を学習時にラ ンダムで上下に少しずれるような処理を行なった。 また、学習率のスケジューリングをWarmupとRestart有 りCosine Annealingにすることで収束速度と精度が共に
向上した。
࣮ݧઃఆ ࠷ऴతʹɺϞσϧͷΞϯαϯϒϧʢՃॏฏۉʣͨ͠ͷ͕࠷ߴਫ਼ͱͳͬͨɻϞσϧɺಛྔந ग़Λߦ͏CBDLCPOF͕ҟͳΔ͚ͩͰ͋Γɺ͜ΕΒશͯ*NBHF/FUͰࣄલֶश͞Ε͍ͯΔɻ ˔ CBDLCPOFɿ 4&3FT/F9U %FOTF/FU *ODFQUJPOW ˔ ଛࣦؔɿ
$SPTT&OUSPQZ-PTT ˔ όοναΠζɿ ˔ ࠷దԽؔɿ NPNFOUVN4(%ʢNPNFOUVN XFJHIUEFDBZʣ ˔ εέδϡʔϥɿ 4(%3ʢMSɿd FQPDIDZDMFʣ ˔ ೖྗղ૾ɿY ˔ FQPDIɿ ˔ (16ɿ 5FTMBW (# (59 (# ˔ ͦͷଞɿ.JYFE1SFDJTJPOͰֶश
·ͱΊ • モデルは、特徴量抽出器としてImageNet等で成果を出しているCNNアーキテクチャ、クラス分類 器としては、隣接した画像の特徴を考慮するためにGRUを使用したネットワークを結合した構成。 • 前処理では、大津の二値化をしようして、良さそうな分割位置を推定。 • 分割位置に対してモデルがロバストに学習できるように学習時にランダムで位置を変化させる。 • 学習率をSGDRで変化させると大幅に精度と収束速度が上昇。
• 最も精度が高くなったモデルは、SE-ResNeXt, DenseNet, Inception-v4をアンサンブルさせたモ デル。 コードは公開しております。 https://github.com/katsura-jp/alcon23