Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
23回アルゴリズムコンテスト 1位解法
Search
catla
December 19, 2019
Research
6
660
23回アルゴリズムコンテスト 1位解法
2019年12月19日に大分大学で開かれたPRMU研究会における発表資料になります。
catla
December 19, 2019
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
210
ベイズ深層学習(6.2)
catla
3
220
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
270
ベイズ深層学習(5.1~5.2)
catla
0
220
ベイズ深層学習(4.1)
catla
0
440
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
550
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Research
See All in Research
SATソルバを用いた複数パス間の制約を満足する経路計算手法 / A Path Calculation Method Satisfying Constraints between Multiple Paths Using SAT Solver
nttcom
0
110
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
350
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
380
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
11
3.2k
[輪講] Transformer Layers as Painters
nk35jk
4
710
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
400
NLP2025SharedTask翻訳部門
moriokataku
0
250
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
260
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
3
180
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
0
170
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
280
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
340
Featured
See All Featured
Statistics for Hackers
jakevdp
797
220k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Music & Morning Musume
bryan
46
6.4k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Typedesign – Prime Four
hannesfritz
41
2.6k
Agile that works and the tools we love
rasmusluckow
328
21k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
How GitHub (no longer) Works
holman
314
140k
The Cult of Friendly URLs
andyhume
78
6.3k
BBQ
matthewcrist
88
9.5k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
ճΞϧΰϦζϜίϯςετ Ґ ղ๏ ஜେֶ ใֶ܈ ใՊֶྨ ஜେֶώϡʔϚϯίϯϐϡςʔγϣϯݚڀࣨ ॴଐ OBPLJLBUTVSB!IDPNQDTUTVLVCBBDKQ
ܡ ঘً 13.6ݚڀձ!େେֶ
ίϯςετ֓ཁ ίϯςετͷظؒɿ d ʢϲ݄ʣ ՝༰ɿ ( + 48 &
+ 3!%!% '(")accuracy* + $#+ 119,997 &#+ 16,387 1+ 388,146
લॲཧ
લॲཧ 標準正規分布の確率密度関数 を[-1, 1]の区間で等間隔で サンプリングしたベクトル。 二値化画像を横に合計を取っ たベクトルを見ると、文字部 分は山状になっている。
Ϟσϧͷશମ૾
݁Ռ 手元で評価( Cross validation )した時の認識率は、 ResNet < OctConv ResNet <
DenseNet < Inception-v4 < SE-ResNeXt となった。 モデル 認識率 OctConv ResNet50( 事前学習無し ) 89.59% SE-ResNeXt101( 事前学習有り ) 90.23% アンサンブル (SE-ResNeXt, DenseNet, Inception-v4) 90.63% 順位 最終結果のスコア 1 位 90.63% 2 位 89.35% 3 位 88.95%
Random CropやRandom Shiftといった基本的な Augmentationに加え、分割位置に対してロバストにな るように前処理によって得られた分割位置を学習時にラ ンダムで上下に少しずれるような処理を行なった。 また、学習率のスケジューリングをWarmupとRestart有 りCosine Annealingにすることで収束速度と精度が共に
向上した。
࣮ݧઃఆ ࠷ऴతʹɺϞσϧͷΞϯαϯϒϧʢՃॏฏۉʣͨ͠ͷ͕࠷ߴਫ਼ͱͳͬͨɻϞσϧɺಛྔந ग़Λߦ͏CBDLCPOF͕ҟͳΔ͚ͩͰ͋Γɺ͜ΕΒશͯ*NBHF/FUͰࣄલֶश͞Ε͍ͯΔɻ ˔ CBDLCPOFɿ 4&3FT/F9U %FOTF/FU *ODFQUJPOW ˔ ଛࣦؔɿ
$SPTT&OUSPQZ-PTT ˔ όοναΠζɿ ˔ ࠷దԽؔɿ NPNFOUVN4(%ʢNPNFOUVN XFJHIUEFDBZʣ ˔ εέδϡʔϥɿ 4(%3ʢMSɿd FQPDIDZDMFʣ ˔ ೖྗղ૾ɿY ˔ FQPDIɿ ˔ (16ɿ 5FTMBW (# (59 (# ˔ ͦͷଞɿ.JYFE1SFDJTJPOͰֶश
·ͱΊ • モデルは、特徴量抽出器としてImageNet等で成果を出しているCNNアーキテクチャ、クラス分類 器としては、隣接した画像の特徴を考慮するためにGRUを使用したネットワークを結合した構成。 • 前処理では、大津の二値化をしようして、良さそうな分割位置を推定。 • 分割位置に対してモデルがロバストに学習できるように学習時にランダムで位置を変化させる。 • 学習率をSGDRで変化させると大幅に精度と収束速度が上昇。
• 最も精度が高くなったモデルは、SE-ResNeXt, DenseNet, Inception-v4をアンサンブルさせたモ デル。 コードは公開しております。 https://github.com/katsura-jp/alcon23