Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
23回アルゴリズムコンテスト 1位解法
Search
catla
December 19, 2019
Research
6
660
23回アルゴリズムコンテスト 1位解法
2019年12月19日に大分大学で開かれたPRMU研究会における発表資料になります。
catla
December 19, 2019
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
210
ベイズ深層学習(6.2)
catla
3
220
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
270
ベイズ深層学習(5.1~5.2)
catla
0
220
ベイズ深層学習(4.1)
catla
0
440
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
550
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Research
See All in Research
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
200
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
440
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
150
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
300
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
2.3k
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
3
330
A Segment Anything Model based weakly supervised learning method for crop mapping using Sentinel-2 time series images
satai
3
290
言語モデルの内部機序:解析と解釈
eumesy
PRO
35
15k
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
3
300
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
270
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
0
160
Weekly AI Agents News! 1月号 アーカイブ
masatoto
1
260
Featured
See All Featured
Speed Design
sergeychernyshev
29
900
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.6k
Facilitating Awesome Meetings
lara
54
6.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.1k
The Language of Interfaces
destraynor
157
25k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.4k
A better future with KSS
kneath
239
17k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Docker and Python
trallard
44
3.3k
Agile that works and the tools we love
rasmusluckow
328
21k
Transcript
ճΞϧΰϦζϜίϯςετ Ґ ղ๏ ஜେֶ ใֶ܈ ใՊֶྨ ஜେֶώϡʔϚϯίϯϐϡςʔγϣϯݚڀࣨ ॴଐ OBPLJLBUTVSB!IDPNQDTUTVLVCBBDKQ
ܡ ঘً 13.6ݚڀձ!େେֶ
ίϯςετ֓ཁ ίϯςετͷظؒɿ d ʢϲ݄ʣ ՝༰ɿ ( + 48 &
+ 3!%!% '(")accuracy* + $#+ 119,997 &#+ 16,387 1+ 388,146
લॲཧ
લॲཧ 標準正規分布の確率密度関数 を[-1, 1]の区間で等間隔で サンプリングしたベクトル。 二値化画像を横に合計を取っ たベクトルを見ると、文字部 分は山状になっている。
Ϟσϧͷશମ૾
݁Ռ 手元で評価( Cross validation )した時の認識率は、 ResNet < OctConv ResNet <
DenseNet < Inception-v4 < SE-ResNeXt となった。 モデル 認識率 OctConv ResNet50( 事前学習無し ) 89.59% SE-ResNeXt101( 事前学習有り ) 90.23% アンサンブル (SE-ResNeXt, DenseNet, Inception-v4) 90.63% 順位 最終結果のスコア 1 位 90.63% 2 位 89.35% 3 位 88.95%
Random CropやRandom Shiftといった基本的な Augmentationに加え、分割位置に対してロバストにな るように前処理によって得られた分割位置を学習時にラ ンダムで上下に少しずれるような処理を行なった。 また、学習率のスケジューリングをWarmupとRestart有 りCosine Annealingにすることで収束速度と精度が共に
向上した。
࣮ݧઃఆ ࠷ऴతʹɺϞσϧͷΞϯαϯϒϧʢՃॏฏۉʣͨ͠ͷ͕࠷ߴਫ਼ͱͳͬͨɻϞσϧɺಛྔந ग़Λߦ͏CBDLCPOF͕ҟͳΔ͚ͩͰ͋Γɺ͜ΕΒશͯ*NBHF/FUͰࣄલֶश͞Ε͍ͯΔɻ ˔ CBDLCPOFɿ 4&3FT/F9U %FOTF/FU *ODFQUJPOW ˔ ଛࣦؔɿ
$SPTT&OUSPQZ-PTT ˔ όοναΠζɿ ˔ ࠷దԽؔɿ NPNFOUVN4(%ʢNPNFOUVN XFJHIUEFDBZʣ ˔ εέδϡʔϥɿ 4(%3ʢMSɿd FQPDIDZDMFʣ ˔ ೖྗղ૾ɿY ˔ FQPDIɿ ˔ (16ɿ 5FTMBW (# (59 (# ˔ ͦͷଞɿ.JYFE1SFDJTJPOͰֶश
·ͱΊ • モデルは、特徴量抽出器としてImageNet等で成果を出しているCNNアーキテクチャ、クラス分類 器としては、隣接した画像の特徴を考慮するためにGRUを使用したネットワークを結合した構成。 • 前処理では、大津の二値化をしようして、良さそうな分割位置を推定。 • 分割位置に対してモデルがロバストに学習できるように学習時にランダムで位置を変化させる。 • 学習率をSGDRで変化させると大幅に精度と収束速度が上昇。
• 最も精度が高くなったモデルは、SE-ResNeXt, DenseNet, Inception-v4をアンサンブルさせたモ デル。 コードは公開しております。 https://github.com/katsura-jp/alcon23