Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズ深層学習(5.1~5.2)
Search
catla
February 28, 2020
Science
0
210
ベイズ深層学習(5.1~5.2)
内容:ベイズニューラルネットワーク(5.1節),近似ベイズ推論の高速化(5.2節)
catla
February 28, 2020
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
200
ベイズ深層学習(6.2)
catla
3
210
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
250
ベイズ深層学習(4.1)
catla
0
410
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
23回アルゴリズムコンテスト 1位解法
catla
6
660
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
540
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Science
See All in Science
最適化超入門
tkm2261
14
3.3k
ベイズ最適化をゼロから
brainpadpr
2
810
機械学習を支える連続最適化
nearme_tech
PRO
1
150
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
190
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
950
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
240
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
390
Celebrate UTIG: Staff and Student Awards 2024
utig
0
460
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
2
580
教師なしテンソル分解に基づく、有糸分裂後の転写再活性化におけるヒストン修飾ブックマークとしての転写因子候補の抽出法
tagtag
0
120
Презентация программы бакалавриата СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
720
20240420 Global Azure 2024 | Azure Migrate でデータセンターのサーバーを評価&移行してみる
olivia_0707
2
900
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Typedesign – Prime Four
hannesfritz
40
2.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
130
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Teambox: Starting and Learning
jrom
133
8.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
Optimizing for Happiness
mojombo
376
70k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Embracing the Ebb and Flow
colly
84
4.5k
Transcript
ϕΠζਂֶश d ܡɹঘً
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷ ۙࣅਪ๏
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ɹষͷۙࣅਪख๏ɼਂֶशϞσϧʹద༻Ͱ͖Δɽ ɹઢܗճؼϞσϧͱಉ༷ʹॱܕχϡʔϥϧωοτϫʔΫʢ//ʣΛϕΠζԽɽ ɹ ύϥϝʔλ ʹࣄલΛઃఆ͠ɼ֬తͳֶशͱ༧ଌΛՄೳʹ͢Δɽ ⟹ W ϕΠζਪʹ͓͚Δֶशͱ༧ଌ ύϥϝʔλͷಉ࣌ɿɹ
ͱදͤΔɽ ֶशɹɿɹ ΛධՁ͢Δɽ ༧ଌɹɿɹ ΛٻΊΔɽ p(Y, W|X) = p(W) N ∏ n=1 p(yn |w, xn ) p(W|X, Y) p(y* |x* , Y, X) n = 1,…, N xn yn W
ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ɹઃఆ ɹɹೖྗσʔλ ɼ؍ଌσʔλ ͓Αͼύϥϝʔλͷಉ࣌ ΛҎԼͷΑ͏ʹ͓͘ɽ ɹɹ؍ଌσʔλɼҎԼͷ͔ΒಘΒΕΔͱԾఆ͢Δɽ
ɹɹ χϡʔϥϧωοτͷؔ ݻఆͷϊΠζύϥϝʔλɽ ɹɹύϥϝʔλɼҎԼͷ͔ΒಘΒΕΔͱઃఆ͢Δɽ ɹ ɹ ݻఆͷϊΠζύϥϝʔλɽ ɹ ɹɹ X = {x1 , …, xN } Y = {y1 , ⋯, yn } p(Y, W|X) = p(W) N ∏ n=1 p(yn |w, xn ) p(yn |xn , W) = (yn | f(xn ; W), σ2 y I) f(xn ; W) σ2 y p(w) = (w|0,σ2 w ) where w ∈ W σ2 w
ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ɹಛ ɹɹ//ͷ͕Ͱ͋Δͱ͖ɼ ɹɹɹӅΕϢχοτ͕ଟ͍ɹ ɹؔෳࡶԽɽ ɹɹɹ ͕େ͖͍ɹ ɹมԽ͕ٸफ़ɽ ɹ ɹɹ
⟶ σw ⟶ ɹϕΠζ//ɼӅΕϢχοτΛ૿͢ͱɼࣄޙ͕ෳࡶʹͳ͍ͬͯ͘͜ͱ͕ ΒΕ͍ͯΔɽ
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ϥϓϥεۙࣅʹΑΔֶश ϥϓϥεۙࣅ p(Z|X) ≈ (Z|ZMAP , {Λ(ZMAP )} −1 )
Λ(Z) = − ∇2 Z log p(Z|X) ɹ؆୯ͷͨΊʹ//ͷग़ྗͷ࣍ݩΛͱ͢Δɽ ࣄޙͷۙࣅ ɹࣄޙͷ."1ਪఆΛٻΊΔɽ ɹɹ Ͱ࠷େΛऔΔύϥϝʔλ ΛٻΊΔɽ ɹࣄޙ࠷େԽɹʹɹରࣄޙ࠷େԽɹͳͷͰɼରࣄޙͷޯΛར༻͢Δ ͱɼҎԼͷΑ͏ͳ࠷దԽʹΑͬͯ."1ਪఆ͕ٻΊΒΕΔɽ ɹ ֶशɽ ⟹ p(W|Y, X) WMAP Wnew = Wold + α∇W log p(W|Y, X)| W=Wold α
ϥϓϥεۙࣅʹΑΔֶश ࣄޙͷۙࣅ ɹࣄޙͷޯɼҎԼͷΑ͏ʹٻΒΕΔɽɹɹɹ ɹɹɹɹɹɹɹɹɹɹ Αͬͯɼ ɹɹɹɹɹɹɹɹɹ ύϥϝʔλ Ͱภඍ͢ΔͱɼҎԼͷΑ͏ʹίετؔͷඍͱͳΔɽ
ɹɹɹɹɹɹɹɹɹ ɼͦΕͧΕ//ͷޡࠩؔͱ֤ύϥϝʔλͷࣄલʹ༝དྷ͢Δਖ਼ଇԽ ߲Ͱ͋Δɽ p(W|Y, X) = p(W)p(Y|X, W) p(X|Y) ∝ p(W)p(Y|X, W) log p(W|Y, X) = log p(Y|X, W) + log p(W) + c = N ∑ n=1 log p(yn |xn , W) + ∑ w∈W log p(w) + c w ∈ W ∂ ∂w log p(W|Y, X) = − { 1 σ2 y ∂ ∂w E(W) + 1 σ2 w ∂ ∂w ΩL2 (W) } E(W), ΩL2 (W)
ϥϓϥεۙࣅʹΑΔֶश ࣄޙͷۙࣅ ɹΑͬͯɼ."1ਪఆΛٻΊͨΒɼࣄޙΛҎԼͷΑ͏ʹۙࣅͰ͖Δɽ ɹɹɹɹɹɹɹɹɹɹ ޡࠩؔʹର͢ΔϔοηߦྻͰ͋Δɽ p(W|Y, X) ≈
q(W) = (W|WMAP , {Λ(WMAP )} −1 ) Λ(W) = − ∇2 W log p(W|Y, X) = 1 σ2 w I + 1 σ2 y H H
ϥϓϥεۙࣅʹΑΔֶश ༧ଌͷۙࣅ ɹϥϓϥεۙࣅΛ༻͍Δͱɼ༧ଌҎԼͷΑ͏ʹۙࣅͰ͖Δɽ ɹ ɹ͔͠͠ɼ ͷதʹ//ؚ͕·Ε͍ͯΔͷͰɼղੳతܭࢉ͕ෆՄೳɽ ɹ͜͜Ͱɼύϥϝʔλͷࣄޙͷີ͕."1ਪఆͷपลʹूத͓ͯ͠Γɼ͔ͭͦͷ খ͞ͳൣғʹ͓͍ͯ ͕
ͷઢܕؔͰΑۙ͘ࣅͰ͖Δͱ͍͏ԾઆΛ͓͘ɽ͜ͷ Ծઆ͔Βɼςʔϥʔల։Ͱ ͷؔ Λ ·ΘΓͰ࣍ۙࣅ͢ΔͱɼҎԼͷΑ͏ ʹͳΔɽ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ p(y* |x* , Y, X) = p(y* |x* ) = ∫ p(y* |x* , W)p(W|X, Y)dW ≈ ∫ p(y* |x* , W)q(W)dW p(y* |x* , W) f(x* |W) W W f(x* |W) WMAP f(x* ; W) ≈ f(x* ; WMAP ) + gT(W − WMAP ) g = ∇W f(x* ; W)| W=WMAP
ϥϓϥεۙࣅʹΑΔֶश ༧ଌͷۙࣅ ɹΑͬͯɼ·ͱΊΔͱҎԼͷۙࣅ͕ࣜಘΒΕΔɽ ɹ ɹ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ p(y* |x* ,
Y, X) = p(y* |x* ) = ∫ p(y* |x* , W)p(W|X, Y)dW ≈ ∫ p(y* |x* , W)q(W)dW = ∫ (yn | f(xn ; W), σ2 y )(W|WMAP , {Λ(WMAP )}−1)dW = ∫ (yn | f(x* ; WMAP ) + gT(W − WMAP ), σ2 y ) (W|WMAP , {Λ(WMAP )}−1)dW = (y* | f(x* ; WMAP ), σ2(x* )) σ2(x* ) = σ2 y + gT{Λ(WMAP )}−1g
ϥϓϥεۙࣅʹΑΔֶश ༧ଌͷۙࣅ ɹΑͬͯɼ·ͱΊΔͱҎԼͷۙࣅ͕ࣜಘΒΕΔɽ ɹ ɹ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ p(y* |x* ,
Y, X) = p(y* |x* ) = ∫ p(y* |x* , W)p(W|X, Y)dW ≈ ∫ p(y* |x* , W)q(W)dW = ∫ (yn | f(xn ; W), σ2 y )(W|WMAP , {Λ(WMAP )}−1)dW = ∫ (yn | f(x* ; WMAP ) + gT(W − WMAP ), σ2 y ) (W|WMAP , {Λ(WMAP )}−1)dW = (y* | f(x* ; WMAP ), σ2(x* )) σ2(x* ) = σ2 y + gT{Λ(WMAP )}−1g ϥϓϥεۙࣅ ςʔϥʔల։ͷҰ࣍ۙࣅ
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ɹରࣄޙʢϋϛϧτχΞϯʹ͓͚ΔϙςϯγϟϧΤωϧΪʔʣ͕αϯϓϦϯά͠ ͍ͨมʹରͯ͠ඍՄೳͳΒ).$๏͕ద༻Ͱ͖Δɽܭࢉ࣌ؒ͑͞ेʹ֬อ͍ͯ͠Ε ɼཧతʹਅͷࣄޙ͔Βͷαϯϓϧ͕ಘΒΕΔʢ.$.$ͷಛʣɽ݁Ռతʹɼෳ ͷαϯϓϧ͔Βෆ࣮֬ੑΛදݱͰ͖Δɽ
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ॏΈύϥϝʔλͷਪ ɹਖ਼نԽ͞Ε͍ͯͳ͍ࣄޙΛར༻͢ΕɼରԠ͢ΔϙςϯγϟϧΤωϧΪʔҎԼ ͷΑ͏ʹͳΔɽ ͜ΕΛඍ͢Δͱɼઌ΄Ͳొͨ͠ίετؔͷඍͱՁͰ͋Δ͜ͱ͕Θ͔Δɽ ɹ ޡࠩٯ๏ʹΑΔޯܭࢉ͕ར༻Ͱ͖Δɽ ʲ.$.$ʹجͮ͘ͷۙࣅਪͷʳ
w αϯϓϧ͕ेͰ͋Δ͔ΛΔखஈ͕ͳ͍ɽ w .$.$ͷύϥϝʔλௐ͕͍͠ɽʢFH).$๏ʹ͓͚ΔεςοϓαΠζεςοϓͳͲ w ֶश͕ɽɹ (W) = − {log p(Y|X, W) + log p(W)} ⟹
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ϋΠύʔύϥϝʔλͷਪ ɹϋΠύʔύϥϝʔλͰ͋Δ ʹͦΕͧΕࣄલΛ༩͑Δ͜ͱͰ ͱಉ࣌ʹ ਪՄೳͰ͋Δɽ ɹ ɹਫ਼ύϥϝʔλ Λಋೖ͠ɼҎԼͷΑ͏ʹࣄલΛΨϯϚͰఆٛ͢Δɽ
ɹಉ༷ʹ ʹରͯ͠ɼҎԼͷΑ͏ʹఆٛ͢Δɽ σw σy W γw = σ−2 w p(γw ) = Gam(γw |aw , bw ) (aw , bw ਖ਼ͷݻఆ) γy = σ−2 y p(γy ) = Gam(γy |ay , by ) (ay , by ਖ਼ͷݻఆ)
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ϋΠύʔύϥϝʔλͷਪ ɹϞσϧʢύϥϝʔλͷಉ࣌ʣΛվΊͯॻ͘ͱɼҎԼͷΑ͏ʹͳΔɽ ɹ p(Y, W, γw , γy
|X) = p(γw )p(γy )p(W|γw ) N ∏ n=1 p(yn |xn , W, γy ) n = 1,…, N xn yn W γy γw ɹࣄޙɼҎԼͷΑ͏ʹͳΔɽ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ p(W, γw , γy |X, Y) αy βw βy αw
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ϋΠύʔύϥϝʔλͷਪ ɹΪϒεαϯϓϦϯάΛ༻͍ͯɼ ΛαϯϓϦϯά͢Δɽ w ͷαϯϓϦϯά ɹɹɹઌ΄Ͳͱಉ༷ʹɼ).$๏Ͱαϯϓϧ͢Δɽ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ
w ͷαϯϓϦϯά ɹɹɹ ɹɹɹ Ψεɼ ΨϯϚʢΨεͷڞࣄલʣͳͷͰɼ ɹɹɹ ΨϯϚͰ͋ΔɽΑͬͯɼ ͨͩ͠ɼ ॏΈύϥϝʔλͷ૯ɽ W, γw , γy W W ∼ p(W|Y, X, γw , γy ) γw p(γw |Y, X, W, γy ) ∝ p(W|γw )p(γw ) p(W|γw ) p(γw ) p(γw |Y, X, W, γy ) γw ∼ Gam( ̂ aw , ̂ bw ) ̂ aw = aw + Kw 2 ̂ bw = bw + 1 2 ∑ w∈W w2 Kw
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ϋΠύʔύϥϝʔλͷਪ w ͷαϯϓϦϯά ɹɹɹ ɹɹɹ Ψεͷ૯ͳͷͰΨεɼ ΨϯϚΑΓɼ
ɹɹɹ ΨϯϚͰ͋ΔɽΑͬͯɼ γy p(γy |Y, X, W, γw ) ∝ p(γw ) N ∏ n=1 p(yn |xn , W, γr ) N ∏ n=1 p(yn |xn , W, γr ) p(γy ) p(γy |Y, X, W, γw ) γy ∼ Gam( ̂ ay , ̂ by ) ̂ ay = ay + N 2 ̂ by = by + 1 2 N ∑ n=1 {yn − f(xn ; W)}2
ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣʹΑΔֶश ϋΠύʔύϥϝʔλͷਪ ɹΨϯϚ ͷฏۉ ɼࢄ ͳͷͰɼ ͕େ͖͍΄Ͳ ʹΑΔ ͷਪఆਫ਼͕ѱ͘ɼ؍ଌʹର͢Δࢄ͕େ͖͘ͳΔΑ͏ʹֶश͞ΕΔɽ
ɹ ɹࠓճɼॏΈύϥϝʔλͷਫ਼ύϥϝʔλɼશମʹͬͯڞ௨ͷ Ͱ͓͍͍͕ͯͨɼ //ͷ֤͝ͱʹਫ਼ύϥϝʔλ ͱ͓͘͜ͱՄೳͰ͋Δɽ Gam(a, b) a/b a/b2 ̂ by f(xn |W) yn γw (γ(1) w , …, γ(L) w )
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ۙࣅϕΠζਪͷߴԽ
ۙࣅϕΠζਪͷߴԽ ʲϕΠζχϡʔϥϧωοτϫʔΫͷܽʳ ɹύϥϝʔλͷपลԽʹ͏ܭࢉྔ͕େ ɹɹ ༧ଌπʔϧͱͯ͋͠·ΓΘΕͳ͔ͬͨɽ ɹ·ͨɼਂֶशඞཁͳֶशσʔλ͕େ ɹɹ όονֶशΛલఏͱͨ͠ख๏Ͱܭࢉޮ͕ѱ͍ɽ ʲͲͷΑ͏ʹܽΛิ͏ʁʳ w
ੵআڈΛۙࣅਪ͢Δ͜ͱͰɼܭࢉͷޮΛ্͛Δɽ w ϛχόονֶशΛಋೖ͢Δɽ ⟹ ⟹
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ʲʳ ɹ.$.$Λར༻ֶͨ͠शେنͳσʔλʹରͯ͠ɼܭࢉޮ͕ѱ͍ɽ ʲղܾࡦʳ ɹܭࢉޮͷߴ͍ϛχόονʹجֶͮ͘शख๏ʢFH֬తޯ߱Լ๏ʣͱෆ࣮֬ੑͷ ਪఆ͕Մೳͳ.$.$ʢFH.)๏ɼ).$๏ʣΛΈ߹ΘͤΔɽ ɹ ֬తϚϧίϑ࿈ϞϯςΧϧϩ๏ ⟹
֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ʲֶशʳ ɹ֬తޯ߱Լ๏ͱϥϯδϡόϯಈྗֶ๏ΛΈ߹Θͤͨɹ֬తޯϥάδϡόϯ ಈྗֶ๏ɹΛར༻ֶͨ͠शΛߟ͑Δɽ ɹύϥϝʔλͷߋ৽Λɹ ͱද͢ɽ ɹ֬తޯ߱Լ๏Ͱɼύϥϝʔλͷߋ৽෯ΛҎԼͷΑ͏ʹॻ͚Δɽ ͨͩ͠ɼ
αϒαϯϓϧͷେ͖͞Ͱ͋ΓɼՃ͑ͯɼϩϏϯεɾϞϯϩʔΞϧΰϦζϜͷ Έʹ͢ΔͨΊʹɼεςοϓʹ͓͚Δֶश ҎԼͷ݅Λຬͨ͢Α͏ʹઃఆ͢ Δɽ Wnew = Wold + ΔW ΔW = αt 2 ∇W log p(W|Xs , Ys ) = αt 2 { N M ∑ n∈S ∇W log p(yn |xn , W) + ∇W log p(W) } M t αt ∞ ∑ i=1 αt = ∞, ∞ ∑ i=1 α2 t < ∞
֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ʲֶशʳ ɹҰํͰɼόονֶशΞϧΰϦζϜͷϥϯδϡόϯಈྗֶ๏ͷαϯϓϧΛಘΔͨΊʹඞ ཁͳεςοϓɼϙςϯγϟϧΤωϧΪʔΛ ɼεςοϓαΠζΛ ΛӡಈྔϕΫτϧͱ͢Δͱɼύϥϝʔλͷߋ৽෯ҎԼͷΑ͏ʹͳΔɽ
ɹ Λখ͘͢͞Εɼ.)๏ʹ͓͚Δड༰ΛݶΓͳ͘·Ͱ͚ۙͮΒΕΔɽ = − log p(W|X, Y) ϵ = αt p ΔW = − ϵ2 2 ∇W + ϵp = αt 2 ∇W log p(W|X, Y) + αt p = αt 2 { N ∑ n=1 ∇W log p(yn |xn , W) + ∇W log p(W) } + αt p, p ∼ (0, I) . αt
֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ʲֶशʳ ɹઌͷͭʢ֬తޯ߱Լ๏ͱϥϯδϡόϯಈྗֶ๏ʣΛΈ߹ΘͤΔͱɼߋ৽෯͕Ҏ ԼͷΑ͏ʹͳΔɽ ɹɹɹɹɹɹɹ ֶशɼઌ΄Ͳͷ݅ͱಉ༷ɽ ɹ ɹʬ͕খ͖͞ͱ͖ʢֶशॳظஈ֊ʣ㲊 ɹɹ4(%ͷརΛੜ͔ͯ͠ࣄޙͷۭؒΛޮతʹ୳ࡧɽ
ɹʬ͕େ͖͘ͳΔʹͭΕͯ㲊 ϥϯδϡόϯಈྗֶ๏ʹΑΔਅͷࣄޙ͔ΒۙࣅతͳαϯϓϧΛಘΒΕΔɽ ΔW = αt 2 { N M ∑ n∈S ∇W log p(yn |xn , W) + ∇W log p(W) } + αt p, p ∼ (0, I) . t t
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
֬తมਪ๏ ɹઌ΄Ͳɼ֬తޯ๏ͱ.$.$ͷΈ߹ΘͤΛհͨ͠ɽ ɹ࣍ɼมਪ๏ͱ֬తޯ߱Լ๏ΛΈ߹ΘͤΔɽ ɹɹ ֬తมਪ๏ ɹ ɹΛมύϥϝʔλͷू߹ͱͨ͠ͱ͖ɼ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ ͱͳΔΑ͏ͳۙࣅ
ΛٻΊΔ͜ͱ͕ඪɽ ⟹ ξ q(W; ξ) ≈ p(W|X, Y) q(W; ξ)
֬తมਪ๏ ɹޮԽͷͨΊʹϛχόονΛಋೖ͢Δɼ ɹ ɹϛχόονͰܭࢉ͞Εͨ ʹର͢ΔෆภਪఆྔͱͳΔɽ
ɹ͕ͨͬͯ͠ɼ Λ࠷େԽ͢ΔΘΓʹɼ Λ࠷େԽ͢Δ͜ͱʹΑͬͯɼޮ Α͘ύϥϝʔλͷࣄޙΛۙࣅͰ͖Δɽ ℒ(ξ) = N ∑ n=1 ∫ q(W; ξ)log p(yn | f(xn ; W))dW − DKL [q(W; ξ)||p(W)] ℒS (ξ) = N M ∑ n∈S ∫ q(W; ξ)log p(yn | f(xn ; W))dW − DKL [q(W; ξ)||p(W)] ℒs ℒ S [ℒs (ξ)] = ℒ(ξ) ℒ(ξ) ℒs (ξ) ϛχόονԽ
֬తมਪ๏ ɹ͜ͷޙͷεϥΠυͰɼۙࣅΛ࣍ͷΑ͏ͳಠཱͳΨεͱԾఆ͠ɼ&-#0Λ ޯ߱Լ๏Λར༻ͯ͠࠷େԽ͢Δ͜ͱΛߟ͑Δɽ q(W; ξ) = ∏ i,j,l (w(l)
i,j |μ(l) i,j , σ(l) i,j 2 )
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ޯͷϞϯςΧϧϩۙࣅ ɹχϡʔϥϧωοτϫʔΫͷ&-#0࠷େԽͰɼ&-#0ʹ͓͚Δύϥϝʔλ ղੳతʹ ੵআڈͰ͖ͳ͍ɽ ɹ ޯ߱Լ๏ʹΑͬͯ Λ࠷େԽɽ ɹޯ߱Լ๏Λ͏ͨΊʹ ΛมύϥϝʔλʹΑΔޯܭࢉΛ͢Δඞཁ͕͋Δɽ
ɼͲͪΒΨεͳͷͰղੳతʹޯܭࢉͰ͖ΔɽҰํͰɼର ղੳతʹੵͰ͖ͳ͍ɽ W ⟹ ℒS (ξ) ℒS (ξ) ξ DKL [q(W; ξ)||p(W)] ∫ q(W; ξ)log p(yn | f(xn ; W))dW
ޯͷϞϯςΧϧϩۙࣅ ɹχϡʔϥϧωοτϫʔΫͷ&-#0࠷େԽͰɼ&-#0ʹ͓͚Δύϥϝʔλ ղੳతʹ ੵআڈͰ͖ͳ͍ɽ ɹ ޯ߱Լ๏ʹΑͬͯ Λ࠷େԽɽ ɹޯ߱Լ๏Λ͏ͨΊʹ ΛมύϥϝʔλʹΑΔޯܭࢉΛ͢Δඞཁ͕͋Δɽ
ɼͲͪΒΨεͳͷͰղੳతʹޯܭࢉͰ͖ΔɽҰํͰɼର ղੳతʹੵͰ͖ͳ͍ɽ W ⟹ ℒS (ξ) ℒS (ξ) ξ DKL [q(W; ξ)||p(W)] ∫ q(W; ξ)log p(yn | f(xn ; W))dW ɹϞϯςΧϧϩ๏ͰੵʢରʣΛۙࣅͯ͠ɼޯͷਪఆΛಘΑ͏ʂ
ޯͷϞϯςΧϧϩۙࣅ ʲඪʳ ɹύϥϝʔλ ʹରͯ͠ɼ͋Δ ͱ Λߟ͑ɼ࣍ͷޯΛਪ͢ Δ͜ͱɽ ʲܭࢉํ๏ʳ
ɹείΞؔਪఆɼ࠶ύϥϝʔλԽޯɼҰൠԽ࠶ύϥϝʔλԽޯɼӄؔඍͳͲ w ∈ ℝ f(w) q(w; ξ) I(ξ) = ∇ξ ∫ f(w)q(w; ξ)dw
ޯͷϞϯςΧϧϩۙࣅ είΞؔਪఆ ɹҎԼͷΑ͏ʹ Λมܗ͢Δɽ ɹ͕ͨͬͯ͠ɼ ͔Β ΛෳαϯϓϦϯά͔ͯ͠ΒඍΛධՁ͢Δ͜ͱͰ ͷෆ
ภਪఆྔ͕ಘΒΕΔɽ ʲద༻Ͱ͖Δ݅ʳɹ ͷඍ͕ܭࢉՄೳɽ ʲʳɹ࣮༻্ඇৗʹߴ͍ࢄ͕ൃੜͯ͠͠·͏ɽ ʲղܾࡦʳɹ੍ޚมྔ๏ͳͲͷࢄݮগख๏ͱΈ߹ΘͤΔɽ I(ξ) I(ξ) = ∇ξ ∫ f(w)q(w; ξ)dw = ∫ f(w)∇ξ q(w; ξ)dw = ∫ f(w)q(w; ξ)∇ξ log q(w; ξ)dw = q(w;ξ) [ f(w)∇ξ log q(w; ξ)] q(w; ξ) w I(ξ) log q(w; ξ)
ޯͷϞϯςΧϧϩۙࣅ ࠶ύϥϝʔλԽޯ ɹ Λ ͔ΒαϯϓϦϯά͢ΔΘΓʹɼʹґଘ͠ͳ͍ ͔ΒΛαϯϓϦϯ ά͠ɼม Λద༻͢Δ͜ͱͰؒతʹ ͷαϯϓϦϯάΛ͢Δ͜ͱΛߟ͑Δɽ ɹ͕ͨͬͯ͠ɼҎԼͷΑ͏ʹޯͷෆภਪఆྔ͕ಘΒΕΔɽ
ʲ۩ମྫʳɹ ɼ ͷ߹ ɹ ɼ ͱ͢Δ͜ͱͰɼ ͔ΒαϯϓϦϯ άͰ͖Δɽมύϥϝʔλʹؔ͢Δޯͷඍɼ࣍ͷΑ͏ʹͳΓɼ֤มύϥϝʔλ ͷޯͷෆภਪఆྔ͕ಘΒΕΔɽ ɹɹɹɹ ɹɹɹɹ w q(w; ξ) ξ q(ϵ) ϵ w = g(ξ, ϵ) w q(ϵ) [ f′(g(ξ; ϵ))∇ξ g(ξ; ϵ)] = I(ξ) ξ = { ̂ μ, ̂ σ2} q(w; ξ) = (w| ̂ μ, ̂ σ2) ˜ ϵ ∼ (0,1) = q(ϵ) ˜ w = g(ξ; ϵ) = ̂ μ + ̂ σϵ ˜ w ( ̂ μ, ̂ σ2) ∂ ∂ ̂ μ ∫ f(w)q(w; ξ)dw = ∫ f′(w)q(w; ξ)dw ∴ I( ̂ μ) = q(w;ξ) [ f′(w)] ∂ ∂ ̂ σ ∫ f(w)q(w; ξ)dw = ∫ f′(w) (w − ̂ μ) ̂ σ q(w; ξ)dw ∴ I( ̂ μ) = q(w;ξ) [f′(w) (w − ̂ μ) ̂ σ ]
ޯͷϞϯςΧϧϩۙࣅ ࠶ύϥϝʔλԽޯͷҰൠԽ ʲ࠶ύϥϝʔλԽޯͷརʳ ɹɹείΞؔਪఆͱൺͯޯͷࢄΛখ͑͘͞ΒΕΔɽ ʲ࠶ύϥϝʔλԽޯͷʳ ɹɹมม ͕ඞཁɽʢશͯͷͰద༻Ͱ͖ΔΘ͚Ͱͳ͍ɽʣ ʲղܾࡦɹྫɿʳɹҰൠԽ࠶ύϥϝʔλԽޯ ɹɹ ʹؔ͢Δ੍Λ؇Ίɼଟ͘ͷछྨͷʹରͯ͠ద༻Մೳͱͨ͠ͷɽ
ɹɹ ͷΑ͏ʹมύϥϝʔλͷґଘੑΛ͢͜ͱΛڐ͢ɽ ʲղܾࡦɹྫɿʳɹӄؔඍ ɹʲ͑Δ݅ʳ w ΛٻΊΔ͜ͱࠔ͕ͩɼٯม ༰қʹಘΒΕΔɽ w ࿈ଓͷ ɹɹ ΛͰඍ͢Δ͜ͱͰظͷޯΛಘΔɽ g g q(ϵ; ξ) g g−1 ϵ = g−1(ϵ; ξ) ξ
ޯͷϞϯςΧϧϩۙࣅ ࠶ύϥϝʔλԽޯͷҰൠԽ ʲղܾࡦɹྫɿʳɹ࿈ଓ؇ ɹɹࢄͷ֬ʹରͯ͠࠶ύϥϝʔλԽޯΛద༻͢Δํ๏ɽ ɹʲ۩ମྫʳ ΧςΰϦʢࢄʣɼΨϯϕϧιϑτϚοΫεʢ࿈ଓʣͷԹύ ϥϝʔλΛʹઃఆͨ͠ͷͱҰக͢Δɽ ɹɹ
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ޯۙࣅʹΑΔมਪ๏ ɹ࣮ࡍʹ࠶ύϥϝʔλԽޯΛར༻ͯ͠ϕΠζχϡʔϥϧωοτͷ&-#0Λ࠷େԽ͢Δɽ ᶃ ϛχόον Λσʔληοτ ͔ΒϥϯμϜʹநग़͢Δɽ ᶄ .ݸʢϛχόονͷαϯϓϧʣͷϊΠζΛऔಘ͢Δɽ ɹ
ᶅ มύϥϝʔλʹؔ͢ΔޯΛܭࢉ͢Δɽ ᶆ &-#0ͷ૿ՃํʹมύϥϝʔλΛߋ৽͢Δɽ s ˜ ϵi ∼ (0, I) ℒs (ξ) = N M ∑ n∈S ∫ q(W; ξ)log p(yn | f(xn ; W))dW − DKL [q(W; ξ)||p(W)] = N M ∑ n∈S ∫ p(ϵ)log p(yn | f(xn ; g(ξ; ϵ)))dϵ − DKL [q(W; ξ)||p(W)] ≈ ℒS,ϵ (ξ) ( ∵ ,ϵ [ℒS,ϵ (ξ)] = ℒ(ξ)) = N M ∑ n∈S log p(yn | f(xn ; g(ξ; ˜ ϵn ))) − DKL [q(W; ξ)||p(W)], ∇ξ ℒs (ξ) ≈ ∇ξ ℒS,ϵ (ξ) = N M ∑ n∈S ∇ξ log p(yn | f(xn ; g(ξ; ˜ ϵn ))) − ∇ξ DKL [q(W; ξ)||p(W)] . ξ ← ξ + α∇ξ ℒS,ϵ (ξ)
ຊͷ༰ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧͷۙࣅਪ๏ ‣ϕΠζχϡʔϥϧωοτϫʔΫϞσϧ ‣ϥϓϥεۙࣅʹΑΔֶश ‣ϋϛϧτχΞϯϞϯςΧϧϩ๏ ‣ۙࣅϕΠζਪͷޮԽ ‣֬తޯϥϯδϡόϯಈྗֶ๏ʹΑΔֶश ‣֬తมਪ๏ʹΑΔֶश ‣ޯͷϞϯςΧϧϩۙࣅ ‣ޯۙࣅʹΑΔมਪ๏
‣ظ๏ʹΑΔֶश
ظ๏ʹΑΔֶश ɹॱܭࢉͰχϡʔϥϧωοτϫʔΫΛ௨ͨ֬͠ͷʹΑΓपลͷධՁΛ ߦ͍ɼٯͰύϥϝʔλΛֶश͢ΔͨΊʹظ๏Λ༻͍ͯपลͷޯΛ ܭࢉ͢Δɽ ֬తٯ๏ ɹ֬తٯ๏σʔλΛஞ࣍తʹॲཧͰ͖ΔͷͰɼେྔσʔλΛ༻ֶ͍ͨशͰε έʔϧՄೳɽ؍ଌσʔλͷਫ਼ύϥϝʔλॏΈͷࣄલΛࢧ͢Δਫ਼ύϥϝʔλ ۙࣅਪՄೳɽ ⟹
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश Ϟσϧ ʲઃఆʳ ɹɹ ͱ͠ɼपลΛҎԼͷΑ͏ʹఆٛ͢Δɽ ɹ
ͷ׆ੑԽؔʹਖ਼نԽઢܗؔʢ3F-6ʣΛ༻͍Δɽ ɹɹύϥϝʔλ ɼಠཱͳΨεʹै͏ͱ͢Δɽ ʲඪʳ ɹɹҎԼͷࣄޙΛۙࣅਪ͢Δ͜ͱɽ yn ∈ ℝ p(Y|X, W, γr ) = N ∏ n=1 (yn | f(xn ; W), γ−1 y ) p(γy ) = Gam(γr |αγy 0 , βγy 0 ) f(xn ; W) W p(W|γw ) = L ∏ l=1 Hl ∏ i=1 Hl−1 ∏ j=1 (w(l) i,j |0,γ−1 w ) p(γw ) = Gam(γw |αγw 0 , βγw 0 ) p(W, γy , γw |) ∝ p(Y|X, W, γr )p(W|γw )p(γy )p(γw )
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश ۙࣅ ɹ֬తٯ๏ɼԾఆີϑΟϧλϦϯάʹج͍͍ͮͯΔɽ ɹύϥϝʔλͷۙࣅΛ࣍ͷΑ͏ʹ͓͘ɽ ɹ ɹ্ͷࣜΛԾఆີϑΟϧλϦϯάʹ͓͚ΔϞʔϝϯτϚονϯάͰஞ࣍తʹߋ৽ͯ͠ ͍͘ɽ q(W,
γy , γw ) = Gam(γy |αγy , βγy )Gam(γw |αγw , βγw ) L ∏ l=1 Hl ∏ i=1 Hl−1 ∏ j=1 (w(l) i,j |m(l) i,j , v(l) i,j ) = q(γy )q(γw )q(W) ԾఆີϑΟϧλϦϯά qi+1 (θ) ≈ ri+1 = 1 Zi+1 fi+1 (θ)qi (θ) ɿҼࢠ fi (θ)
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश ॳظԽͱࣄલҼࢠͷಋೖ ʲॳظԽʳ ɹɹۙࣅ͕ແใʹͳΔΑ͏ʹɼ ɼ ɼ ɼ ɼ ɼ
ͰॳظԽ͢Δɽ ʲࣄલҼࢠͷಋೖʳ ɹඪͷࣄޙͷҼࢠΛͭͭՃ͢Δ͜ͱͰۙࣅΛߋ৽͢Δɽ ɹࠓճͷϞσϧʹ͓͚ΔࣄલҼࢠҎԼͷΑ͏ʹͳΔɽ ɹ m(l) i,j = 0 v(l) i,j = ∞ αγy = 1 βγy = 0 αγw = 1 βγw = 0 p(γr ), p(γw ), {p(w(l) i,j |γw )}i,j,l ࣄޙɿɹ ۙࣅɿɹ p(W, γy , γw |) ∝ p(Y|X, W, γr )p(W|γy )p(γw )p(γw ) q(W, γy , γw ) = q(γy )q(γw )q(W)
ظ๏ʹΑΔֶश ॳظԽͱࣄલҼࢠͷಋೖ ʲࣄલҼࢠͷಋೖʳ wҼࢠ ͓Αͼ ͷՃɽ ɹۙࣅ Λࣄલ ͱಉ͡ͷʹ͍ͯ͠ΔͷͰɼҼࢠͷߋ৽ ҎԼͷΑ͏ʹͳΔɽ
ɹɹɹɹɹɹɹɹ ɼ ɼ ɼ ͭ·Γɼ ɼ p(γw ) p(γy ) q(γy ), q(γw ) p(γy ), p(γw ) qnew(γy )qnew(γw )qnew(W) ≈ p(γy )p(γw )q(W) αnew γy = αγy 0 βnew γy = βγy 0 αnew γw = αγw 0 βnew γw = βγw 0 q(γr ) ← p(γr ) q(γw ) ← p(γw ) ԾఆີϑΟϧλϦϯά qnew(γy )qnew(γw )qnew(W) ≈ r = 1 Z f new(γy , γw , W)q(γy )q(γw )q(W)
ظ๏ʹΑΔֶश ॳظԽͱࣄલҼࢠͷಋೖ ʲࣄલҼࢠͷಋೖʳ wҼࢠ ͷՃ ɹҎ߱ͰɼΠϯσοΫε Λলུ͢Δɽ ɹߋ৽͞ΕΔͷɼ
͓Αͼ Ͱ͋ΔɽΑͬͯɼͦΕͧΕΛҎԼͷΑ͏ʹߋ৽ ͢Δɽ ɹԼઢ෦ΛҼࢠͱΈͳ͢ɽҙ͖͢ɼͭͷͷߋ৽ʹͭͷ৽ͨʹߋ৽͞ Εͨ༻͍ͯ͠ͳ͍ͳͷͰɼߋ৽ॱʹؔͳ͍͜ͱɽ p(w(l) i,j |γw ) qnew(γy )qnew(γw )qnew(W) ≈ 1 Z p(w(l) i,j |γw )q(γy )q(γw )q(W) ⇔ qnew(γw )qnew(W) ≈ 1 Z p(w(l) i,j |γw )q(γw )q(W) i, j, l q(W) q(γw ) qnew(W) ≈ 1 Z0 p(w|γw )q(γw )q(W) qnew(γw ) ≈ 1 Z0 p(w|γw )q(W)q(γw )
ظ๏ʹΑΔֶश ॳظԽͱࣄલҼࢠͷಋೖ ʲࣄલҼࢠͷಋೖʳ wҼࢠ ͷՃɿ ͷߋ৽ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ p(w(l) i,j |γw
) q(W) qnew(W) ≈ 1 Z0 p(w|γw )q(γw )q(W) ɹ ΨεͰ͋Δ͜ͱ͔ΒɼͷΨεͷྫʢQʣͱಉ༷ʹ ϞʔϝϯτϚονϯάʹΑͬͯɼҎԼͷΑ͏ʹۙࣅ͕ߋ৽͞ΕΔɽ q(W) mnew = m + v ∂ ∂m log Z0 vnew = v − v2 {( ∂ ∂m log Z0) 2 − 2 ∂ ∂v log Z0} Z0 = Z(αγw , βγw ) = ∫ p(w|γw )q(W)q(γw )dwdγw = ∫ (w|0,γ−1 w )(w|m, v)Gam(γw |αγw , βγw )dwdγw
ظ๏ʹΑΔֶश ॳظԽͱࣄલҼࢠͷಋೖ ʲࣄલҼࢠͷಋೖʳ wҼࢠ ͷՃɿ ͷߋ৽ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ p(w(l) i,j |γw
) q(γw ) qnew(γw ) ≈ 1 Z0 p(w|γw )q(W)q(γw ) ɹ ΨϯϚͰ͋Δ͜ͱ͔ΒɼͷΨϯϚͷྫʢQʣͱಉ༷ʹ ϞʔϝϯτϚονϯάʹΑͬͯɼҎԼͷΑ͏ʹۙࣅ͕ߋ৽͞ΕΔɽ ɹɹɹɹɹɹɹɹ ͨͩ͠ɼ ɼ q(γw ) αnew γw = { Z0 Z2 Z−2 1 αγw + 1 αγw − 1 } −1 βnew γw = { Z2 Z−1 1 αγw + 1 βγw − Z1 Z−1 0 αγw βγw } −1 Z1 = Z(αγw + 1,βγw ) Z2 = Z(αγw + 2,βγw )
ظ๏ʹΑΔֶश ॳظԽͱࣄલҼࢠͷಋೖ ʲࣄલҼࢠͷಋೖʳ ɹਖ਼نԽఆ ݫີʹٻΊΒΕͳ͍ͷͰɼܭࢉ్தͰݱΕΔενϡʔσϯτ ͷUΛɼฏۉͱࢄͷ͍͠ΨεͰۙࣅ͢Δɽ Z(αγw , βγw
) Z(αγw , βγw ) = ∫ (w|0,γ−1 w )q(W, γy , γw )dWdγy dγw = ∫ (w|0,γ−1 w )(w|m, v)Gam(γw |αγw , βγw )dwdγw = ∫ St(w|0,αγw /βγw ,2αγw )(w|m, v)dw ≈ ∫ (w|0,(αγw − 1)/βγw )(w|m, v)dw = (w|0,(αγw − 1)/βγw + v) UΛฏۉͱࢄ͕ ͍͠Ψεʹ ۙࣅɽ
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश Ҽࢠͷಋೖ ɹࣄલͷ֤Ҽࢠ͕Ճ͞Εͨޙɼ ͷҼࢠΛͭͣͭՃ͢Δɽ ɹ Ψεɼ ΨϯϚͳͷͰɼઌ΄Ͳͷߋ৽ͱಉ༷ʹߦ͏ɽ
৽͘͠ೖ͖ͬͯͨͷҼࢠ ʹର͢Δਖ਼نԽఆʢ ͷ Ճ࣌ͱҟͳΔߋ৽෦ʣΛܭࢉ͢Δ͜ͱ͕ඪɽ ɹ p(Y|X, W, γy ) qnew(γy )qnew(γw )qnew(W) ≈ 1 Z p(yi |xi , W, γy )q(γy )q(γw )q(W) ⇔ qnew(γr )qnew(W) ≈ 1 Z p(yi |xi , W, γy )q(γr )q(W) q(W) q(γy ) qnew(W) ≈ 1 Z0 p(yi |xi , W, γy )q(γw )q(W) qnew(γw ) ≈ 1 Z0 p(yi |xi , W, γy )q(W)q(γw ) ⟹ p(yi |xi , W, γy ) p(w(l) i,j |γw )
ظ๏ʹΑΔֶश Ҽࢠͷಋೖ ɹ൪ͷΛՃͨ͠ͱ͖ͷਖ਼نԽఆΛɼ࣍ͷΑ͏ʹۙࣅతʹٻΊΔɽ ɹ i Z(αγy , βγy
) = ∫ (yi | f(xi , W), γy )q(W, γy , γw )dWdγy dγw = ∫ (yi | f(xi , W), γy )q(W, γy )dWdγy ≈ ∫ (yi |z(L), γy )(z(L) |mz(L) , vz(L) )Gam(γy |αγy , βγy )dz(L)dγy = ∫ St(yi |z(L), αγy /βγy ,2αγy )(z(L) |mz(L) , vz(L) )dz(L) ≈ ∫ (yi |mz(L) , (αγy − 1)/βγy )(z(L) |mz(L) , vz(L) )dw = (yi |mz(L) , (αγy − 1)/βγy + vz(L) ) UΛฏۉͱࢄ͕ ͍͠Ψεʹ ۙࣅɽ ͷӅΕϢχοτ ͕ฏۉ ɼ ࢄ ʹै͏ͱԾఆɽ ʢ࣍ͷεϥΠυͰৄ͘͠ʣ l z(l) ∈ ℝHl mz(l) vz(l)
ظ๏ʹΑΔֶश Ҽࢠͷಋೖ ɹ ͷฏۉ ͱࢄ ɼ࠶ؼతͳܭࢉʹΑͬͯۙࣅతʹಘΒΕΔɽ ʲܭࢉํ๏ʳ ɹͷӅΕϢχοτͷ ͕ฏۉ ɼࢄ
Λ࣋ͭͱԾఆ͢Δɽ· ͨɼͷॏΈߦྻ Λ͔͚ͨޙͷϕΫτϧʢ׆ੑʣΛ ͱ͓͘ɽ ͷฏۉͱࢄҎԼͷΑ͏ʹͳΔɽ ͨͩ͠ɼ ͷɼ֤ύϥϝʔλͷฏۉ ͱࢄ Ͱ͋Δɽ· ͨɼ ΞμϚʔϧੵɽ (z(L) |mz(L) , vz(L) ) mz(L) vz(L) l z(l) ∈ ℝHl mz(l) vz(l) l W(l) ∈ ℝHl ×Hl−1 a(l) = W(l)z(l−1)/ Hl−1 a(l) ma(l) = M(l)mz(l−1) / Hl−1 va(l) = {(M(l) ⊙ M(l))vz(l−1) + V(l)(mz(l−1) ⊙ mz(l−1) ) + V(l)vz(l−1) }/Hl−1 M(l), V(l) ∈ ℝHl ×Hl−1 m(l) i,j v(l) i,j ⊙
ظ๏ʹΑΔֶश Ҽࢠͷಋೖ ɹ ͷฏۉ ͱࢄ ɼ࠶ؼతͳܭࢉʹΑͬͯۙࣅతʹಘΒΕΔɽ ʲܭࢉํ๏ʳ ɹͷӅΕϢχοτͷ ͕ฏۉ ɼࢄ
Λ࣋ͭͱԾఆ͢Δɽ· ͨɼͷॏΈߦྻ Λ͔͚ͨޙͷϕΫτϧʢ׆ੑʣΛ ͱ͓͘ɽ ͷฏۉͱࢄҎԼͷΑ͏ʹͳΔɽ ͨͩ͠ɼ ͷɼ֤ύϥϝʔλͷฏۉ ͱࢄ Ͱ͋Δɽ· ͨɼ ΞμϚʔϧੵɽ (z(L) |mz(L) , vz(L) ) mz(L) vz(L) l z(l) ∈ ℝHl mz(l) vz(l) l W(l) ∈ ℝHl ×Hl−1 a(l) = W(l)z(l−1)/ Hl−1 a(l) ma(l) = M(l)mz(l−1) / Hl−1 va(l) = {(M(l) ⊙ M(l))vz(l−1) + V(l)(mz(l−1) ⊙ mz(l−1) ) + V(l)vz(l−1) }/Hl−1 M(l), V(l) ∈ ℝHl ×Hl−1 m(l) i,j v(l) i,j ⊙ ͷӅΕϢχοτͷฏۉ ͱ ࢄ ͔Βͷ׆ੑͷฏۉ ͱࢄ ͕ٻ·Δɽ l − 1 mz(l−1) vz(l−1) l ma(l) va(l)
ظ๏ʹΑΔֶश Ҽࢠͷಋೖ ɹ ͷฏۉ ͱࢄ ɼ࠶ؼతͳܭࢉʹΑͬͯۙࣅతʹಘΒΕΔɽ ʲܭࢉํ๏ʳ ɹͷӅΕϢχοτͷ ͕ฏۉ ɼࢄ
Λ࣋ͭͱԾఆ͢Δɽ· ͨɼͷॏΈߦྻ Λ͔͚ͨޙͷϕΫτϧʢ׆ੑʣΛ ͱ͓͘ɽ ͷฏۉͱࢄҎԼͷΑ͏ʹͳΔɽ ͨͩ͠ɼ ͷɼ֤ύϥϝʔλͷฏۉ ͱࢄ Ͱ͋Δɽ· ͨɼ ΞμϚʔϧੵɽ (z(L) |mz(L) , vz(L) ) mz(L) vz(L) l z(l) ∈ ℝHl mz(l) vz(l) l W(l) ∈ ℝHl ×Hl−1 a(l) = W(l)z(l−1)/ Hl−1 a(l) ma(l) = M(l)mz(l−1) / Hl−1 va(l) = {(M(l) ⊙ M(l))vz(l−1) + V(l)(mz(l−1) ⊙ mz(l−1) ) + V(l)vz(l−1) }/Hl−1 M(l), V(l) ∈ ℝHl ×Hl−1 m(l) i,j v(l) i,j ⊙ ͷӅΕϢχοτͷฏۉ ͱ ࢄ ͔Βͷ׆ੑͷฏۉ ͱࢄ ͕ٻ·Δɽ l − 1 mz(l−1) vz(l−1) l ma(l) va(l) ͷ׆ੑͷฏۉ ͱࢄ ͔Β ͷӅΕϢχοτͷฏۉ ͱࢄ ͕ٻ·Ε࠶ؼతʹܭࢉՄೳɽ l ma(l) va(l) l mz(l) vz(l)
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश ׆ੑͷ ɹ׆ੑ ͷ Λܭࢉ͢Δɽத৺ۃݶఆཧΑΓɼӅΕϢχοτ ͕େ͖͍߹ɼ ۙࣅతʹΨεʹै͏ɽ
ɹΨεʹै͏ม͕3F-6Λ௨ΔͱɼਤͷӈਤͷΑ͏ʹͷࠞ߹ʹͳ Δɽ ᶃ ෛͷೖྗΛ௨͖ͬͯͨαϯϓϧɼฏۉ ɼࢄ ͷΑ͏ͳ࣭ʹͳ Δɽ ᶄ ඇෛͷೖྗΛ௨͖ͬͯͨαϯϓϧɼҎԼ͕ΒΕͨஅยΨεʹͳΔɽ a(l) p(a(l) |W(l), z(l−1)) Hl−1 a(l) p(a(l) |W(l), z(l−1)) ≈ q(a(l)) = (a(l) |ma(l) , va(l) ) μp = 0 σp = 0
ظ๏ʹΑΔֶश ׆ੑͷ ʲࠞ߹ͷฏۉͱࢄͷҰൠࣜʳ ɹ ݸͷཁૉΛ࣋ͭࠞ߹ͷฏۉͱࢄɼࠞ߹ ɼ ͱ͢Δͱɼ ҰൠతʹҎԼͷΑ͏ʹͳΔɽ
K πk > 0 K ∑ k=1 πk = 1 [xmix ] = K ∑ k=1 πk μk [xmix ] = K ∑ k=1 πk (μk + σk ) − [xmix ]2
ظ๏ʹΑΔֶश ׆ੑͷ ʲ׆ੑͷࠞ߹ʹద༻ʳɹ ɹɹ࣭ͱஅยΨεͷࠞ߹ΛͦΕͧΕ ɼ ͱ͢Δɽͭ·Γɼ ɽ ɹ ɼ ͱ͓͘ͱɼҎԼͷΑ͏ʹͳΔɽ
ɹ͕ͨͬͯ͠ɼஅΨεͷҎԼͷΑ͏ʹٻΊΒΕΔɽ ɹ<4,PU[ >ΑΓɼஅยΨεͷฏۉ ͱࢄ ҎԼͷΑ͏ʹͳΔɽ ɹҰൠࣜʹ͓͚Δ ɼ ʹͯΊΔͱɼͷฏۉͱࢄ͕ಘΒΕΔɽ πp πt πp + πp = 1 πp ¯ μ = − μ/σ πp = ∫ 0 −∞ (x|μ, σ2)dx = Φ(−μ/σ) = Φ( ¯ μ) πt = 1 − πp = Φ(− ¯ μ) μt σt μt = μ + σ ( ¯ μ|0,1) Φ(− ¯ μ) σ2 t = σ2 {1 + ¯ μ ( ¯ μ|0,1) Φ(− ¯ μ) − ( ¯ μ|0,1) Φ(− ¯ μ) − 2} ( ¯ μ|0,1) Φ(− ¯ μ) [xmix ] [xmix ] z
ظ๏ʹΑΔֶश ׆ੑͷ ͭ·Γɼ ͷ׆ੑͷฏۉͱࢄ͔ΒͷӅΕϢχοτͷฏۉͱࢄ͕ܭࢉՄೳɽ l l ͷฏۉ ͱࢄ ɼ࠶ؼతͳܭࢉʹΑͬͯۙࣅతʹಘΒΕΔɽ
(z(L) |mz(L) , vz(L) ) mz(L) vz(L)
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश ޯʹجֶͮ͘श ɹ ɼฏۉ ɼࢄ ͱͯ͠ѻ͏ʢ࠶ؼܭࢉͷॳظ ɼ ʣɽ dͰɼ ͷग़ྗ
͔Β׆ੑ Λ௨͠ɼͷग़ྗ ͷฏۉͱࢄΛٻΊΔʢத৺ۃݶఆཧΑΓΨεʹۙࣅͰ͖ΔɽʣҰ࿈ͷྲྀΕΛ հͨ͠ɽ͜ͷۙࣅ݁ՌΛ࠶ؼతʹ༻͍Δ͜ͱͰɼ࠷ऴ ͷΛΨε Ͱۙࣅ͢Δ͜ͱ͕Ͱ͖Δɽ ɹ͕ͨͬͯ͠ɼਖ਼نԽఆͷۙࣅදݱ͕ಘΒΕΔɽ ɹਖ਼نԽఆΛಘͨޙɼύϥϝʔλʹΑΔඍΛܭࢉ͢Δ͜ͱͰޯ͕ܭࢉͰ͖Δɽ z(0) xi 0 mz(0) vz(0) l − 1 z(l−1) a(l) l z(l) z(L) (z(L) |mz(L) , v(L) z ) Z(αγy , βγy ) ≈ (yi |mz(L) , (αγy − 1)/βγy + vz(L) )
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश ֬తٯ๏ͷ·ͱΊ Ϟσϧͷఆٛɿ p(W, γy , γw |) ∝ p(Y|X,
W, γr )p(W|γw )p(γy )p(γw ) ۙࣅͷಋೖɿ q(W, γy , γw ) = q(γy )q(γw )q(W) ۙࣅͷॳظԽɿ q0 (γy ), q0 (γw ), q0 (W) ࣄલҼࢠͷಋೖʢͦͷʣɿ Ҽࢠ ͷՃɿ Ҽࢠ ͷՃɿ p(γr ) q(γr ) ← p(γr ) p(γw ) q(γw ) ← p(γw )
ظ๏ʹΑΔֶश ֬తٯ๏ͷ·ͱΊ ࣄલҼࢠͷಋೖʢͦͷʣɿ for l = 1 to L do
for j = 1 to Hl−1 do for i = 1 to Hl do Ҽࢠp(w(l) i,j |γw )ͷՃɿ ⋅ q(W)ͷߋ৽ ⋅ q(γw )ͷߋ৽ ॱɿ p(yi |xi , W, γy ) where i ∈ s ӅΕϢχοτͱ׆ੑͷฏۉͱࢄΛ࠶ؼܭࢉ Ҽࢠ ͷಋೖɿ ͷߋ৽ p(yi |xi , W, γy ) q(W), q(γy )
ظ๏ʹΑΔֶश ʲظ๏ʹΑΔֶशʳ ‣Ϟσϧ ‣ۙࣅ ‣ॳظԽͱࣄલҼࢠͷಋೖ ‣Ҽࢠͷಋೖ ‣׆ੑͷ ‣ޯʹجֶͮ͘श ‣֬తٯ๏ͷ·ͱΊ ‣ؔ࿈ख๏
ظ๏ʹΑΔֶश ؔ࿈ख๏ ɹ֬తٯ๏ʹࣅͨख๏ͱͯ͠ɼܾఆతมਪ๏͕͋Δɽ ʲมਪ๏ͷܽʳ ɹ&-#0ͷධՁͷͨΊʹରͷظΛܭࢉ͢Δඞཁ͕͋ΓɼϞϯςΧϧϩ๏Ͱۙ ࣅղΛಘ͍ͯΔɽ ҆ఆੑ͕͍ ʲܾఆతมਪ๏ʳ ɹظͷۙࣅܭࢉΛܾఆతʹߦ͏͜ͱͰ҆ఆੑΛߴΊΒΕΔɽ ⟹