Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 SIG-SPATIAL'21 | Brownian Bridge Interpol...
Search
cocomoff
December 14, 2021
Research
0
520
論文読み会 SIG-SPATIAL'21 | Brownian Bridge Interpolation for Human Mobility?
論文読み会のための資料
(A slide for the paper-reading group at my company.)
cocomoff
December 14, 2021
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 NeurIPS2024 | UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
cocomoff
1
90
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
73
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
260
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
150
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
56
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
cocomoff
0
100
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
320
ClimaX: A foundation model for weather and climate
cocomoff
0
610
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
cocomoff
0
260
Other Decks in Research
See All in Research
説明可能な機械学習と数理最適化
kelicht
2
920
2026.01ウェビナー資料
elith
0
200
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
150
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
370
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
650
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
490
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
640
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
260
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
20年前に50代だった人たちの今
hysmrk
0
140
Featured
See All Featured
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
63
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
56
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
210
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
160
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
300
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Transcript
Brownian Bridge Interpolation for Human Mobility? 著者: John Krumm, Microsoft
Research 読む人: @cocomoff @論文読み会 2021/12/14
内容 「Brownian bridge」っていう簡単な確率的補間手法があるけど,これっ て人間の位置情報の補間に使えるのか? を調べるために,12M人のデータ に対して実際に適用してやってみた & 適用するために手法も確立した ブラウン橋 1/17
目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 2/17
確率過程とブラウン橋 (1/3) 確率過程: 時間などの条件によって変化する確率変数の数理モデル 雑な理解: のようなオブジェクトを扱う道具 マルコフ過程: が にのみ依存する ガウス過程:
から任意に 個取り出して (略) したものが 常に多次元正規分布に従うような確率過程 ブラウン運動: 微粒子がランダムに運動する物理現象 ウィーナー過程: ブラウン運動の数学的なモデル 標準ブラウン運動: 以下を満たす確率過程 , は定常増分を持つ, は増分の列が互い に独立になる, ,確率1で は連続 3/17 マルコフ過程のうち,取りうる値が加算個以下の場合,マルコフ連鎖と呼ばれるアレになる
確率過程とブラウン橋 (2/3) ブラウン橋: 標準ブラウン運動の定義域 を にのみ制限し, であるような標準ブラウン運動 実装的には, を標準ブラウン運動のオブジェクトとして, で定義されるような
である 4/17
確率過程とブラウン橋 (3/3) 2次元のブラウン橋 (論文版): 2点 が観測済みで,その間をパラメー タ で補間するような確率過程 ただしパラメータは2点の線形補間 平均ベクトル:
分散は は唯一のパラメータ (diffusion coefficient と呼ばれる) 5/17
目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 6/17
論文のResearch Question ブラウン橋の手法的な立ち位置 ブラウン橋は人流データ補間に対してどういう性質を持つのか パラメータが でシンプルだけど,本当にOK? 2つの角度から検証する diffusion coefficient の
consistency を確認する 既存手法が遅いので,最尤推定法を作った ブラウン橋とデータの間で統計的検定をしてみる 7/17
目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 8/17
点の取り方 ブラウン橋は2点の補間なので,人流データから点を抽出して計算する 論文で使ったデータ (左の範囲) 論文では「50km以内」「48時間以内」の点を使った パラメータ推定のために3点を抽出して推定する 右図の取り方が Horne triples と呼ばれている
(traditional method) 本論文では全3点取る場合も考えて All triples と呼ぶ 論文データではHornが286,541,325個,Allが173,844,732,847個 9/17
最尤推定法 データ 位置 の尤度 データに 個の3点があるので, として最尤推定する 頑張って式展開すると以下が求まる ( )
10/17
推定パラメータの使い方とデータ分割 | 個人単位 データ (例えば人流) に対してどのように推定値 を使うのか Horne triplesとAll triplesを計算し,データ中の個人が持つtriplesの個数
をカウントする (たぶん1つの を使っていいのか?を見たい) 11/17
個人をグループ分けして複数のパラメータを推定する | 分割単位 距離と時間の分かれぐらいでグループ分けして推定するのもアリ 分解能を とし,データ全体を で分け,全体で を1000分割, を576分割し,全部で576,000個に分割して個数を可視化 12/17
目次 内容 確率過程とブラウン橋 論文のResearch Question ブラウン橋のパラメータを求める最尤推定法 実験 13/17
Diffusion Coefficientsの推定 いろいろ推定した (individual vs collective, trimmed vs untrimmed) 結論
データでは人は単一の を持っていない Horne triplesとAll triplesでの差は大きくないが,傾向もない 簡単に関連付けて結論付ける方法はなさそう 14/17
統計的検定 | 平均ベクトルのHotelling's T-square test ブラウン橋では間の点 について を期待 帰無仮説: 期待ベクトルがゼロベクトルになる
を変更した場合,どれぐらい検定が失敗するかのカーブを調べた Horn triplesを使うときはreasonableだが,all triplesでは…? 15/17
統計的検定 | ガウス分布の検定 2点の間を予測する確率が正規分布で書けることから,中間点が実際にガ ウス分布に従っているか?を検定で確認すれば良い (正規性の検定) と変数変換すると, である.今真の が分からないので, と設
定した (正規性を怖さないからOK,というノリ) Henze-Zirkler testを利用した (最新のmultivariate nomality test) 16/17
まとめ やりたかったこと: 人流補間にブラウン橋が使えるのか? 検討したこと の検証: 最尤推定を提案した上で計算すると,人流の共通パラメ ータはなさそう.1つ選ぶならmedianとかを使うのが良さそう データと比較した検定: (1) Horn
triplesに対して,平均ベクトルはvalid (2) データはほとんどガウス分布に従っていないので,ブラウ ン橋はデータの補間として正確ではない そのためシンプルなブラウン橋でのタイトルへの答えは No 今後の課題 より複雑な過程,他の確率的な補間の検証,データからの学習 17/17