$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20190223_nlpaperchallenge_CV_4.3to5.5
Search
yoppe
February 23, 2019
Science
2
840
20190223_nlpaperchallenge_CV_4.3to5.5
Presentation at
https://nlpaper-challenge.connpass.com/event/118557/
.
yoppe
February 23, 2019
Tweet
Share
More Decks by yoppe
See All by yoppe
20211023_recsys2021_paper_reading_YoheiKikuta
diracdiego
2
500
20201121_oldpaperreading_computing_machinery_and_intelligence
diracdiego
0
170
20200906_ACL2020_metric_for_ordinal_classification_YoheiKikuta
diracdiego
1
1.3k
20191102_ACL2019_adversarial_examples_in_NLP_YoheiKIKUTA
diracdiego
2
1.4k
20180701_CVPR2018_reading_YoheiKIKUTA
diracdiego
3
1.2k
20180414_WSDM2018_reading_YoheiKIKUTA
diracdiego
0
730
20180306_NIPS2017_DeepLearning
diracdiego
4
5.9k
20180215_MLKitchen7_YoheiKIKUTA
diracdiego
0
450
20180210_Cookpad_TechConf2018_YoheiKIKUTA
diracdiego
5
1.2k
Other Decks in Science
See All in Science
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
130
NDCG is NOT All I Need
statditto
2
2.5k
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
110
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
240
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
データベース03: 関係データモデル
trycycle
PRO
1
320
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
力学系から見た現代的な機械学習
hanbao
3
3.5k
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Designing Experiences People Love
moore
143
24k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
The Language of Interfaces
destraynor
162
25k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Building Adaptive Systems
keathley
44
2.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Speed Design
sergeychernyshev
33
1.4k
Being A Developer After 40
akosma
91
590k
Transcript
ୈ2ճ nlpaper.challenge NLP/CV ަྲྀษڧձ ը૾ೝࣝ ୈ4.3ষ~ୈ5.5ষ 20190223 Yohei KIKUTA
ࣗݾհ • Twitter ID @yohei_kikuta • Resume • ࠷ۙୀ৬ͯ͠ແ৬ʹͳΓ·ͨ͠ ϒϩάΤϯτϦ
ແ৬ͱͯ͠Έ͍ͨਓ͓͕͚͍ͩ͘͞ʂ ΫοΫύουྑ͍ձࣾͳͷͰస৬͍ͨ͠ਓͥͻͲ͏ͧʂ
ଟ༷ମֶश͚ͩৄ͘͠Γ·͢ • ը૾ೝࣝ ຊͷ 4.3~5.5 Λൃද • ہॴಛʹ͔ؔͯ͠ͳΓߴີͰ࣌ؒʹ͖͠Εͳ͍ ଟ༷ମֶश ΧʔωϧؔۙࣅʢಛʹͦͷͨΊͷجૅ͕ࣝॏ͍ʣ
ͦͷ΄͔༷ʑͳ • શମͷ·ͱΊͱུ֓Λہॴಛͷ෦Λܰ͘આ໌ͨ͠ޙɺଟ ༷ମֶशΛৄ͘͠આ໌ Q. ͳͥଟ༷ମֶशͳͷ͔ʁ A. ͕ࣗগ͠ਅ໘ʹษڧͯ͠Έ͔͔ͨͬͨΒ
4.3~4.6 ͷ·ͱΊ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ
5.1~5.5 ͷ·ͱΊ ʢ֬తʣޯ߱Լ๏χϡʔτϯ๏Ͱύϥϝλ w Λֶश
ہॴಛΛ༻͍ͨ࠶ߏங ͜Ε݁ہͲͷล͕ଟ༷ମͳͷ͔ʁ ͱ͍͏͕ฉ͖͑ͯͦ͜͏͕ͩɺͦΕޙͰগ͠ৄ͘͠આ໌
ಛࣸ૾ʹΑΔΧʔωϧͷۙࣅ ػցֶशʹଌ͍Δͷʁͱ͍͏ٙΛ࣋ͭਓ Mercer’s theorem ͱ͔ Bochner’s theorem ͱ͔Λݟ·͠ΐ͏
ۭؒใͷ׆༻ • ϓʔϦϯάʹΑࣦͬͯΘΕΔҐஔใΛखͰՃ͑Δ • ہॴهड़ࢠͷҐஔεέʔϧΛՃ͑Δ • ہॴهड़ࢠͷࣗݾ૬ؔߦྻͷཁૉΛՃ͑Δ • spatial pyramid
ϓʔϦϯάޙͷಛʹۭؒใΛ༩
ଟ༷ମֶश ଟ༷ମֶशʹͯ͠গ͠ৄ͘͠આ໌͢Δʢݸਓతڵຯʣ આ໌͢ΔͷҎԼͷτϐοΫɿ • ͦͦଟ༷ମͱʁʢֶతʹݫີͳ͠ͳ͍ʣ • ଟ༷ମֶशʹࢸΔϞνϕʔγϣϯ • Ұͭͷྫͱͯ͠ہॴ࠲ඪ coding
ͷվળͷจΛհ [140] K. Yu, T. Zhang. Improved local coordinate coding using local tangents. In ICML, 2010.
ଟ༷ମͱʁ ہॴతʹ Euclid ۭؒͰهड़Ͱ͖ΔਤΛషΓ߹ΘͤͯදͤΔ ྫʣද໘Λߟ͑Δ ※ Φ ͱ Θ ͚ͩͰ࠲ඪܥషΓ͖Εͳ͍ʢશͳٿͰͳ͍ʣ
ہॴతʢզʑͷৗεέʔϧʣʹ Euclid ࠲ඪͰهड़Ͱ͖Δ ͦͷ࠲ඪΛషΓ߹ΘͤΕද໘શମΛΧόʔͰ͖Δ ͦͷΑ͏ͳషΓ߹ΘͤͷใͰ 3 ࣍ݩͷٿͷใٞՄ
ଟ༷ମͱʁ σʔλͷॅΉۭؒಉ͡Α͏ͳͷͩͱ૾͞ΕΔ ͜ͷΑ͏ͳঢ়گͰɺྫ͑ೋؒͷڑΛଌΔͱ͖ʹߴ࣍ݩۭ ؒͰͷ Euclid ڑෆద͔͠Εͳ͍ → ଟ༷ମʹԊͬͯڑΛଌΔํ͕ੑ࣭Λଊ͑ΒΕͦ͏ʢଌઢʣ → ใزԿʹ͓͚Δࣗવޯ๏ͳͲ͜ΕΛ͍ͬͯΔ
ଟ༷ମֶशʹࢸΔಈػ • ࣍ݩͷढ͍ͷճආ ྫʣσʔλେྔʹ͋Ε kNN Ͱ͍͍͡ΌΜ → μϝͰ͢ • σʔλͷ༗͢ΔಛΛΑΓྑ͘Ѳ
ઌ΄ͲͷྫͷΑ͏ʹ୯ͳΔ Euclid ڑ͕ෆద͔͠Εͳ͍ ྫʣࣗવޯ๏ɺt-SNE • ༷ʑͳΞϓϩʔν͔Β৽ͨͳݟ͕ಘΒΕΔ͔ ඍزԿతͳΞϓϩʔνʢہॴతʣˠ େମͷͬͪ͜ Ґ૬زԿతͳΞϓϩʔνʢେҬతʣˠ ࠓ৮Εͳ͍
ʢิʣ࣍ݩͷढ͍ • ಛྔͷ࣍ݩ͕େ͖͗͢Δ߹ Ϟσϧ͕ෳࡶ͗ͯ͢దʹֶशͰ͖ͳ͍ • σʔλۭؒͷ࣍ݩ͕େ͖͗͢Δ߹ ྫͱͯ͠ΫϥελϦϯάΛߟ͑Δ ٿ໘ूதݱʹΑΓɺҟͳΔؒͷڑ͕͘͠ͳ͍ͬͯ͘ ݁Ռͱͯ͠ A
͔Βݟͯ B C ΄΅ಉ͡Ͱ۠ผෆՄ ʢ࣍ݩͷढ͍ͷ ͡Ίͯͷύλʔϯೝࣝ ͕ৄ͍͠ʣ
ଟ༷ମֶशͷྫ ہॴ࠲ඪ coding Λվળ͢Δ͜ͱΛߟ͑Δ K. Yu, T. Zhang. Improved local
coordinate coding using local tangents. In ICML, 2010. ࠷ऴతͳඪσʔλ͕͢ଟ༷ମͷࡏతͳ࣍ݩʢPCA Ͱٻ ΊΔʣΛߟྀ͠ɺͦͷใΛͬͯ coding Λิਖ਼
४උ
ہॴ࠲ඪ coding ʹΑΔۙࣅ
(4.79) ࣜͷূ໌
ہॴ࠲ඪ coding ͷֶश๏
֦ுہॴ࠲ඪ coding
σʔλଟ༷ମͷఆٛ
ہॴಛ coding with u ূ໌ུʢઌ΄Ͳͷূ໌͕͔ͬͯΕ͘͠ͳ͍ʣ u (local) PCA ͳͲͰٻΊɺm
खͰܾΊΔύϥϝλ c(M) ؔʹ͓͚ΔϦϓγοπఆʹ૬ ॏཁͳͷ c(M) ͕খ͍͞߹ʹ bound ͕Ωπ͘ͳΔͱ͍͏͜ͱ → ͜Εখ͞ͳྖҬͰσʔλଟ༷ମ͕ flat ͳߏͰ͋Δ߹ → “ఆੑత” ͳԾఆͰ flat Ͱͳͯ͘༗ޮͳ߹͋ΓಘΔ
ֶशΞϧΰϦζϜ จͷΞϧΰϦζϜࡌͤΔʢs, m hyperparameterʣ
࣮ݧ݁ՌɿMNIST Cross validation ʹΑΓ s = 0, m = 64
୯७ͳہॴಛ coding ͱൺΔͱ anchor ͕গͳͯ͘ྑ͍
࣮ݧ݁ՌɿCIFAR10 Cross validation ʹΑΓ s = 10, m = 256
ͪ͜Β anchor ͕গͳͯ͘ྑ͍݁ՌΛ͍ࣔͯ͠Δ
ଟ༷ମֶशʹཱͭ • σʔλͷߏΛ͏·͘ଊ͑ͯ༗༻ͳಛྔΛ࡞Εͨ • ہॴੑʹΛ͠ͳ͕Βߴ࣍ݩใΛ࣍ݩͰۙࣅ • ࣮ࡍʹࣝผੑೳ্͕ • σΟʔϓϥʔχϯάͰଟ༷ମֶशڵຯਂ͍τϐοΫ ใزԿ
ϦʔϚϯଟ༷ମ্ͰֶशΛఆࣜԽ …
4.3~4.6 ͷ·ͱΊʢ࠶ܝʣ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ