Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習入門 (in JSL)
Search
Etsuji Nakai
December 18, 2019
Technology
1
4.3k
機械学習入門 (in JSL)
Etsuji Nakai
December 18, 2019
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
19
4.2k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
580
Lecture course on Microservices : Part 1
enakai00
1
3.6k
Lecture course on Microservices : Part 2
enakai00
2
3.6k
Lecture course on Microservices : Part 3
enakai00
1
3.5k
Lecture course on Microservices : Part 4
enakai00
1
3.5k
JAX / Flax 入門
enakai00
1
550
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
4k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
510
Other Decks in Technology
See All in Technology
SREのためのeBPF活用ステップアップガイド
egmc
2
1.3k
サービスを止めるな! DDoS攻撃へのスマートな備えと最前線の事例
coconala_engineer
1
170
shake-upを科学する
rsakata
7
1k
[SRE NEXT] ARR150億円_エンジニア140名_27チーム_17プロダクトから始めるSLO.pdf
satos
5
3k
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
1
930
推し書籍📚 / Books and a QA Engineer
ak1210
0
140
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
2
2k
United™️ Airlines®️ Customer®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedguide
0
800
ロールが細分化された組織でSREは何をするか?
tgidgd
1
400
AIエージェントが書くのなら直接CloudFormationを書かせればいいじゃないですか何故AWS CDKを使う必要があるのさ
watany
18
7.5k
衛星運用をソフトウェアエンジニアに依頼したときにできあがるもの
sankichi92
1
1k
[SRE NEXT 2025] すみずみまで暖かく照らすあなたの太陽でありたい
carnappopper
2
460
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
How STYLIGHT went responsive
nonsquared
100
5.6k
Music & Morning Musume
bryan
46
6.7k
The World Runs on Bad Software
bkeepers
PRO
70
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Being A Developer After 40
akosma
90
590k
A designer walks into a library…
pauljervisheath
207
24k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
282
13k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Transcript
1 Tech Talk 機械学習入門 (in JSL) Introduction to Machine Learning
2012/12/10 Etsuji Nakai
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 2 中の技術は、さまざま・・・
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 3 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
ディープラーニングによる画像認識技術(Google フォト) 4 画像の種類を識別して、 自動で「アルバム」を作成 https://photos.google.com/albums
ディープラーニングによる自然言語処理技術(Gmail) https://gmail.googleblog.com/2016/03/smart-reply-comes-to-inbox-by-gmail-on-the-web.html 文脈を理解して 返答文を自動生成 スマホからの 返信の 20% 以上 5 返答メッセージを選択
6 ディープラーニング(深層学習) の仕組み
ニューラルネットワークの仕組み 7 Input “cat” ニューラルネットワークの本質は 「入力データから予測値を出力する関数」
「関数」って何でしたっけ? 8 係数(パラメーター θ)の値を変えると 同じ入力値から、得られる出力値が変化する 計算式 x 入力値 y 出力値
教師あり学習の仕組み label, input 正解ラベルのついた「トレーニングデータ」 に対して、予測の正解率が向上するように 関数に含まれるパラメータをチューニング “cat” “dog” “car” “apple”
OUTPUT
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 10
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 11 すべて某社の 得意分野
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 12 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
まとめ • 機械学習 ◦ 過去データの特徴を自動的に発見して、新しいデータについて 予測する技術 • ディープラーニング(深層学習) ◦ ニューラルネットワークを用いた機械学習技術
◦ 非構造化データ(画像・音声・自然言語など)に高い予測性能 を発揮 • AI(人工知能) ◦ あたかも知能を持つかのような機能を提供する製品・サービス ◦ 最近はディープラーニングを活用したものが多い 13
Thank you !