Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習入門 (in JSL)
Search
Etsuji Nakai
December 18, 2019
Technology
1
4.3k
機械学習入門 (in JSL)
Etsuji Nakai
December 18, 2019
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
23
8.4k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
640
Lecture course on Microservices : Part 1
enakai00
1
3.7k
Lecture course on Microservices : Part 2
enakai00
2
3.7k
Lecture course on Microservices : Part 3
enakai00
1
3.6k
Lecture course on Microservices : Part 4
enakai00
1
3.6k
JAX / Flax 入門
enakai00
1
990
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
4.3k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
550
Other Decks in Technology
See All in Technology
「データの価値を、みんなの武器に。」Data Enablementの価値とツラみ
ryoskdara_
1
120
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
3
710
AI駆動開発とRAGプロダクトへの挑戦の軌跡 - 弁護士ドットコムでの学びから -
bengo4com
0
310
Cosmos World Foundation Model Platform for Physical AI
takmin
0
1.1k
フルスタックGoでスコア改ざんを防いだ話
ponyo877
0
450
#23 Turing × atmaCup 2nd 6th Place Solution + 取り組み方紹介
yumizu
0
140
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
1
2.9k
2026年のAIエージェント構築はどうなる?
minorun365
6
900
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
340
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
330
Generative UI を試そう!A2-UIでAIエージェントにダッシュボードを作らせてみた
kamoshika
1
220
個人的3D Gaussian Splattingニュースをご紹介 / sharing 3d gaussian splatting news
drumath2237
0
230
Featured
See All Featured
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
110
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Visualization
eitanlees
150
17k
Leo the Paperboy
mayatellez
4
1.4k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Practical Orchestrator
shlominoach
191
11k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
840
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
77
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
1
1.9k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
480
Unsuck your backbone
ammeep
671
58k
Transcript
1 Tech Talk 機械学習入門 (in JSL) Introduction to Machine Learning
2012/12/10 Etsuji Nakai
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 2 中の技術は、さまざま・・・
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 3 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
ディープラーニングによる画像認識技術(Google フォト) 4 画像の種類を識別して、 自動で「アルバム」を作成 https://photos.google.com/albums
ディープラーニングによる自然言語処理技術(Gmail) https://gmail.googleblog.com/2016/03/smart-reply-comes-to-inbox-by-gmail-on-the-web.html 文脈を理解して 返答文を自動生成 スマホからの 返信の 20% 以上 5 返答メッセージを選択
6 ディープラーニング(深層学習) の仕組み
ニューラルネットワークの仕組み 7 Input “cat” ニューラルネットワークの本質は 「入力データから予測値を出力する関数」
「関数」って何でしたっけ? 8 係数(パラメーター θ)の値を変えると 同じ入力値から、得られる出力値が変化する 計算式 x 入力値 y 出力値
教師あり学習の仕組み label, input 正解ラベルのついた「トレーニングデータ」 に対して、予測の正解率が向上するように 関数に含まれるパラメータをチューニング “cat” “dog” “car” “apple”
OUTPUT
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 10
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 11 すべて某社の 得意分野
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 12 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
まとめ • 機械学習 ◦ 過去データの特徴を自動的に発見して、新しいデータについて 予測する技術 • ディープラーニング(深層学習) ◦ ニューラルネットワークを用いた機械学習技術
◦ 非構造化データ(画像・音声・自然言語など)に高い予測性能 を発揮 • AI(人工知能) ◦ あたかも知能を持つかのような機能を提供する製品・サービス ◦ 最近はディープラーニングを活用したものが多い 13
Thank you !