Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Linear Algebra at Large Scale
Search
Elizabeth Ramirez
April 27, 2018
Science
7
910
Linear Algebra at Large Scale
Elizabeth Ramirez
April 27, 2018
Tweet
Share
More Decks by Elizabeth Ramirez
See All by Elizabeth Ramirez
Maritime Transportation from Space: The most important industry you know nothing about.
eramirem
0
27
LADL-Code Mesh V
eramirem
0
200
Transition Matrix Estimation in High Dimensional Time Series.
eramirem
0
250
The Linear Algebra of Deep Learning
eramirem
2
710
Linear Algebra for FE Developers
eramirem
1
620
Top 10: Los mejores algoritmos del Siglo XX
eramirem
0
430
Numerical Analysis for Orbit Propagation
eramirem
0
240
A New Approach to Linear Filtering and Prediction Problems
eramirem
0
1.5k
Kalman Filters for non-rocket science - PyCon 2016
eramirem
2
380
Other Decks in Science
See All in Science
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
430
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.5k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
480
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
2
110
mathematics of indirect reciprocity
yohm
1
140
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
450
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
160
ほたるのひかり/RayTracingCamp10
kugimasa
1
710
Transport information Geometry: Current and Future II
lwc2017
0
150
データベース08: 実体関連モデルとは?
trycycle
PRO
0
670
機械学習 - pandas入門
trycycle
PRO
0
260
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.3k
How to Ace a Technical Interview
jacobian
277
23k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
230
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Adopting Sorbet at Scale
ufuk
77
9.4k
Transcript
Linear Algebra at Large Scale Elizabeth Ramirez @eramirem
Computational Engineer We model complex systems on the planet, like
forestry and agriculture using satellite imagery.
None
Top 10 Algorithms of the 20th Century
Often the most expensive computations in large-scale codes. Curse of
Dimensionality
Linear Systems Nonlinear Systems Machine Learning Deep Learning
Most ubiquitous problem in Scientific Computing and Data Analysis
What solves? Systems of Equations Polynomial Interpolation Linear Least-Squares
What we know? Gaussian Elimination Complexity
HPC Alternative: Iterative Methods General Form
Jacobi Gauss-Seidel
Convergence of Basic Iterative Methods Spectral radius
Krylov Subspaces
Conjugate Gradient Method (CG) i) ii)
Conjugate Gradient (CG)
Bi-conjugate gradient (BiCG) Any linear system
Deep Learning Primitives Weights, inputs, outputs stored in tensors Matrix
Multiplication Convolution Inner Product Transposition Rectified Linear Unit (ReLu)
Matrix Multiplication Fundamental task Naive: Strassen:
Low-Rank Approximation Accelerates matrix multiplication, therefore, accelerates convolution. Requires SVD:
Low-Rank Multiplication:
Single Instruction Multiple Data (SIMD) Data-level parallelism Incompatible with code
designed for sequential processors Instruction set available in commercial CPUs and GPGPUs
Intel® Math Kernel Library (Intel® MKL) Improved Matrix Multiplication Performance
in LAPACK LU decomposition and inverse without pivoting Take advantage of SIMD instruction set In summary: High Performance Linear Algebra
None
References http://www.siam.org/pdf/news/637.pdf https://software.intel.com/en-us/mkl https://software.intel.com/en-us/articles/t ensorflow-optimizations-on-modern-intel-arc hitecture