Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Plug-and-Play Control and Optimization in Power...

Florian Dörfler
October 16, 2024
710

Plug-and-Play Control and Optimization in Power Systems

EPFL, 2015

Florian Dörfler

October 16, 2024
Tweet

More Decks by Florian Dörfler

Transcript

  1. Plug-and-Play Control and Optimization in Power Systems Laboratoire d’Automatique Seminar

    ´ Ecole Polytechnique F´ ed´ erale de Lausanne Florian D¨ orfler
  2. Operation of electric power networks purpose of electric power grid:

    generate/transmit/distribute operation: hierarchical & based on bulk generation things are changing . . . tems are changing . . . installations EVs ng share of renewables e changes uilding control mechanism changes 2 / 32
  3. Conventional hierarchical control architecture Power System 3. Tertiary control (offline)

    Goal: optimize operation Strategy: centralized & forecast 2. Secondary control (slower) Goal: maintain operating point Strategy: centralized 1. Primary control (fast) Goal: stabilization & load sharing Strategy: decentralized Is this top-to-bottom architecture based on bulk generation control still appropriate in tomorrow’s grid? 3 / 32
  4. A few (of many) game changers synchronous generator ⇒ power

    electronics scaling distributed generation transmission! distribution! generation! other paradigm shifts ems are changing ... nstallations Vs g share of renewables e changes ilding control echanism changes 4 / 32
  5. Challenges & opportunities in tomorrow’s power grid perational challenges more

    uncertainty & less inertia more volatile & faster fluctuations pportunities re-instrumentation: comm & sensors and actuators throughout grid advances in control of cyber- physical & complex systems break vertical & horizontal hierarchy plug’n’play control: fast, model-free, & without central authority Power System 5 / 32
  6. A preview – plug-and-play operation architecture flat hierarchy, distributed, no

    time-scale separations, & model-free . . . source # 1 … … … Power System source # n source # 2 Secondary Control Tertiary Control Primary Control Transceiver Secondary Control Tertiary Control Primary Control Transceiver Secondary Control Tertiary Control Primary Control Transceiver 6 / 32
  7. Outline Introduction Modeling Primary Control Tertiary Control Secondary Control P-n-P

    Experiments Beyond Emulation & PID Conclusions we will illustrate all theorems with experiments
  8. Modeling: a power system is a circuit 1 synchronous AC

    circuit with harmonic waveforms Ei ei(θi +ω∗t) 2 loads demand constant power 3 coupling via Kirchhoff & Ohm Gij + i Bij i j P∗ i + i Q∗ i i injection = power flows 4 identical lines G/B = const. (equivalent to lossless case G/B = 0) 5 decoupling: Pi ≈ Pi (θ) & Qi ≈ Qi (E) (for simplicity of presentation) active power: Pi = j Bij Ei Ej sin(θi − θj ) + Gij Ei Ej cos(θi − θj ) reactive power: Qi = − j Bij Ei Ej cos(θi − θj ) + Gij Ei Ej sin(θi − θj ) 7 / 32
  9. Modeling: a power system is a circuit 1 synchronous AC

    circuit with harmonic waveforms Ei ei(θi +ω∗t) 2 loads demand constant power 3 coupling via Kirchhoff & Ohm Gij + i Bij i j P∗ i + i Q∗ i i injection = power flows 4 identical lines G/B = const. (equivalent to lossless case G/B = 0) 5 decoupling: Pi ≈ Pi (θ) & Qi ≈ Qi (E) (for simplicity of presentation) trigonometric active power flow: Pi (θ) = j Bij sin(θi − θj ) polynomial reactive power flow: Qi (E) = − j Bij Ei Ej (not today) 7 / 32
  10. Modeling the “essential” network dynamics & controls (models can be

    arbitrarily detailed) 1 synchronous machines (swing dynamics) Mi ¨ θi = P∗ i + Pc i − Pi (θ) 2 DC & variable AC sources interfaced with voltage-source converters P∗ i + Pc i = Pi (θ) 3 controllable loads (voltage- and frequency-responsive) P∗ i + Pc i = Pi (θ) mech. torque electr. torque Eei(θ+ωt) Pi (θ) , Qi (E) Pi + i Qi Eei(θ+ωt) 8 / 32
  11. Decentralized primary control of active power Emulate physics of dissipative

    coupled synchronous machines: Mi ¨ θ + Di ˙ θi = P∗ i − j Bij sin(θi − θj ) Conventional wisdom: physics are naturally stable & sync fre- quency reveals power imbalance P/ ˙ θ droop control: (ωi − ω∗) ∝ (P∗ i − Pi (θ)) Di ˙ θi = P∗ i − Pi (θ) Hz power supplied power consumed 50 49 51 52 48 ωsync = i P∗ i / i Di ωsync 9 / 32
  12. Putting the pieces together... differential-algebraic, nonlinear, large-scale closed loop network

    physics Di ˙ θi = (P∗ i − Pi (θ)) droop control power balance: Pmech i = P∗ i + Pc i − Pi (θ) power flow: Pi (θ) = j Bij sin(θi − θj ) synchronous machines: Mi ¨ θi + Di ˙ θi = P∗ i − j Bij sin(θi − θj ) inverter sources: Di ˙ θi = P∗ i − j Bij sin(θi − θj ) controllable loads: Di ˙ θi = P∗ i − j Bij sin(θi − θj ) passive loads/inverters: 0 = P∗ i − j Bij sin(θi − θj ) 10 / 32
  13. Closed-loop stability under droop control Theorem: stability of droop control

    [J. Simpson-Porco, FD, & F. Bullo, ’12] ∃ unique & exp. stable frequency sync ⇐⇒ active power flow is feasible Main proof ideas and some further results: • synchronization frequency: ωsync = ω∗ + sources P∗ i + loads P∗ i sources Di (∝ power balance) • steady-state power injections: Pi = P∗ i (#i passive) P∗ i − Di (ωsync −ω∗) (#i active) (depend on Di & P∗ i ) • stability via incremental Lyapunov [Zhao, Mallada, & FD ’14, J. Schiffer & FD ’15] V(x) = kinetic energy + DAE potential energy + ε · Chetaev cross term 11 / 32
  14. Tertiary control & energy management an offline resource allocation &

    scheduling problem minimize {cost of generation, losses, . . . } subject to equality constraints: power balance equations inequality constraints: flow/injection/voltage constraints logic constraints: commit generators yes/no . . . 12 / 32
  15. Objective: economic generation dispatch minimize the total accumulated generation (many

    variations possible) minimize θ∈Tn , u∈RnI J(u) = sources αi u2 i subject to source power balance: P∗ i + ui = Pi (θ) load power balance: P∗ i = Pi (θ) branch flow constraints: |θi − θj | ≤ γij < π/2 Unconstrained case: identical marginal costs αi ui = αj uj at optimality In conventional power system operation, the economic dispatch is solved offline, in a centralized way, & with a model & load forecast In a grid with distributed energy resources, the economic dispatch should be solved online, in a decentralized way, & without knowing a model 13 / 32
  16. Objective: decentralized dispatch optimization Insight: droop-controlled system = decentralized primal/dual

    algorithm Theorem: optimal droop [FD, Simpson-Porco, & Bullo ’13, Zhao, Mallada, & FD ’14] The following statements are equivalent: (i) the economic dispatch with cost coefficients αi is strictly feasible with global minimizer (θ , u ). (ii) ∃ droop coefficients Di such that the power system possesses a unique & locally exp. stable sync’d solution θ. If (i) & (ii) are true, then θi ∼θ i , ui =−Di (ωsync −ω∗), & Di αi = Dj αj . similar results for non-quadratic (strictly convex) cost & constraints similar results in transmission ntwks with DC flow [E. Mallada & S. Low, ’13] & [N. Li, L. Chen, C. Zhao, & S. Low ’13] & [X. Zhang & A. Papachristodoulou, ’13] & [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, ’13] & . . . 14 / 32
  17. Conventional secondary frequency control in power systems interconnected systems •

    centralized automatic generation control (AGC) control area remainder control areas PT PL Ptie PG compatible with econ. dispatch [N. Li, L. Chen, C. Zhao, & S. Low ’13] isolated systems • decentralized PI control 342 − − − − + + + R ωref ∆ω ω Pm Pref KA ∆Pω Kω s 1 s Σ Σ Σ Figure 9.8 Supplementary control added to the turbine gover shown by the dashed line, consists of an integrating element which adds a c proportional to the integral of the speed (or frequency) error to the load ref modifies the value of the setting in the Pref circuit thereby shifting the sp in the way shown in Figure 9.7. Not all the generating units in a system that implements decentralized c with supplementary loops and participate in secondary control. Usually is globally stabilizing [C. Zhao, E. Mallada, & FD, ’14] 15 / 32
  18. Conventional secondary frequency control in power systems interconnected systems •

    centralized automatic generation control (AGC) control area remainder control areas PT PL Ptie PG compatible with econ. dispatch [N. Li, L. Chen, C. Zhao, & S. Low ’13] isolated systems • decentralized PI control 342 − − − − + + + R ωref ∆ω ω Pm Pref KA ∆Pω Kω s 1 s Σ Σ Σ Figure 9.8 Supplementary control added to the turbine gover shown by the dashed line, consists of an integrating element which adds a c proportional to the integral of the speed (or frequency) error to the load ref modifies the value of the setting in the Pref circuit thereby shifting the sp in the way shown in Figure 9.7. Not all the generating units in a system that implements decentralized c with supplementary loops and participate in secondary control. Usually is globally stabilizing [C. Zhao, E. Mallada, & FD, ’14] centralized & not applicable to DER does not maintain economic optimality Distributed energy resources require distributed (!) secondary control. 15 / 32
  19. Distributed Averaging PI (DAPI) control Di ˙ θi = P∗

    i − Pi (θ) − Ωi ki ˙ Ωi = Di ˙ θi − j ⊆ sources aij · (αi Ωi −αj Ωj ) • no tuning & no time-scale separation: ki , Di > 0 • recovers optimal dispatch • distributed & modular: connected comm. network • has seen many extensions [C. de Persis et al., H. Sandberg et al., J. Schiffer et al., M. Zhu et al., . . . ] Power System Secondary Primary Tertiary Secondary Secondary Primary Tertiary Primary Tertiary P1 P2 Pn ˙ θ1 ˙ θn ˙ θ2 Ω2 Ωn Ω1 ˙ θ1 ˙ θ2 ˙ θn α2 Ω2 α1 Ω1 … … … Theorem: stability of DAPI [J. Simpson-Porco, FD, & F. Bullo ’12] [C. Zhao, E. Mallada, & FD ’14] primary droop controller works ⇐⇒ secondary DAPI controller works 16 / 32
  20. Some quick simulations & extensions IEEE 39 New England with

    distributed DAPI control decentralized PI control distributed DAPI control droop control decentralized PI & DAPI control regulate frequency 0 1 2 3 4 5 0 0.005 0.01 0.015 0.02 0.025 Time (sec) Total cost (pu) minimum integral control DAI distributed DAPI control decentralized PI control global minimum DAPI control minimizes cost with little effort ⇒ strictly convex & differentiable cost J(u) = sources Ji (ui ) ⇒ non-linear frequency droop curve Ji −1( ˙ θi ) = P∗ i − Pi (θ) ⇒ include dead-bands, saturation, etc. Å Å ã ã −1 −0.5 0 0.5 1 0 5 10 15 20 25 di ci (di ) −10 −5 0 5 10 −1 −0.5 0 0.5 1 ωi + λi di (ωi + λi ) injection droop c′ i −1(·) frequency cost ci (·) cost Ji (·) droop J′ i −1(·) 17 / 32
  21. Plug’n’play architecture flat hierarchy, distributed, no time-scale separations, & model-free

    source # 1 … … … Power System source # n source # 2 Secondary Control Tertiary Control Primary Control Transceiver Secondary Control Tertiary Control Primary Control Transceiver Secondary Control Tertiary Control Primary Control Transceiver 18 / 32
  22. Plug’n’play architecture recap of detailed signal flow (active power only)

    Power system: physics & loadflow Di ˙ θi =P∗ i − Pi − Ωi Di ∝ 1/αi Ωi ˙ θi Primary control: mimic oscillators & polyn. symmetry Tertiary control: marginal costs ∝ 1 /control gains ˙ θi Pi Pi = j Bij sin(θi − θj ) ki ˙ Ωi =Di ˙ θi − j ⊆ sources aij · (αi Ωi −αj Ωj ) Secondary control: diffusive averaging of optimal injections αi Ωi . . . . . . αi Ωi . . . . . . αk Ωk αj Ωj 19 / 32
  23. Plug’n’play architecture similar results for decoupled reactive power flow [J.

    Simpson-Porco, FD, & F. Bullo ’13 - ’15] Power system: physics & loadflow Di ˙ θi =P∗ i − Pi − Ωi ki ˙ Ωi =Di ˙ θi − j ⊆ sources aij · (αi Ωi −αj Ωj ) Di ∝ 1/αi τi ˙ Ei =−Ci Ei (Ei − E∗ i ) − Qi − ei κi ˙ ei = − j ⊆ sources aij · Qi Qi − Qj Qj −εei Ωi ˙ θi Primary control: mimic oscillators & polyn. symmetry Tertiary control: marginal costs ∝ 1 /control gains Secondary control: diffusive averaging of optimal injections αi Ωi Qi Ei ˙ θi Pi ei Qi Qi /Qi . . . . . . αi Ωi . . . . . . αk Ωk Qk /Qk Qj /Qj αj Ωj Pi = j Bij sin(θi − θj ) Qi = − j Bij Ei Ej Qj /Qj 19 / 32
  24. Plug’n’play architecture can all be proved also in the coupled

    case [J. Schiffer, FD, N. Monshizadeh C. de Persis, ’16] Power system: physics & loadflow Di ˙ θi =P∗ i − Pi − Ωi Di ∝ 1/αi τi ˙ Ei =−Ci Ei (Ei − E∗ i ) − Qi − ei Ωi ˙ θi Primary control: mimic oscillators & polyn. symmetry Tertiary control: marginal costs ∝ 1 /control gains Qi Ei ˙ θi Pi ei Qi Pi = j Bij Ei Ej sin(θi − θj ) Qi = − j Bij Ei Ej cos(θi − θj ) ki ˙ Ωi =Di ˙ θi − j ⊆ sources aij · (αi Ωi −αj Ωj ) κi ˙ ei = − j ⊆ sources aij · Qi Qi − Qj Qj −εei Secondary control: diffusive averaging of optimal injections αi Ωi Qi /Qi . . . . . . αi Ωi . . . . . . αk Ωk Qk /Qk Qj /Qj αj Ωj Qj /Qj 19 / 32
  25. Plug’n’play architecture experiments also work well in the lossy case

    Power system: physics & loadflow Di ˙ θi =P∗ i − Pi − Ωi Di ∝ 1/αi τi ˙ Ei =−Ci Ei (Ei − E∗ i ) − Qi − ei Ωi ˙ θi Primary control: mimic oscillators & polyn. symmetry Tertiary control: marginal costs ∝ 1 /control gains Qi Ei ˙ θi Pi ei Qi Pi = j Bij Ei Ej sin(θi − θj ) + Gij Ei Ej cos(θi − θj ) Qi = − j Bij Ei Ej cos(θi − θj ) + Gij Ei Ej sin(θi − θj ) ki ˙ Ωi =Di ˙ θi − j ⊆ sources aij · (αi Ωi −αj Ωj ) κi ˙ ei = − j ⊆ sources aij · Qi Qi − Qj Qj −εei Secondary control: diffusive averaging of optimal injections αi Ωi Qi /Qi . . . . . . αi Ωi . . . . . . αk Ωk Qk /Qk Qj /Qj αj Ωj Qj /Qj 19 / 32
  26. Experimental validation in collaboration with Q. Shafiee & J.M. Guerrero

    @ Aalborg University DC Source LCL filter DC Source LCL filter DC Source LCL filter 4 DG DC Source LCL filter 1 DG 2 DG 3 DG Load 1 Load 2 12 Z 23 Z 34 Z 1 Z 2 Z 20 / 32
  27. Experimental validation frequency/voltage regulation & active/reactive load sharing t =

    22s: load # 2 unplugged t = 36s: load # 2 plugged back t ∈ [0s, 7s]: primary & tertiary control t = 7s: secondary control activated ! "! #! $! %! &! "!! "&! #!! #&! $!! $&! %!! %&! &!! Reactive Power Injections Time (s) Power (VAR) ! "! #! $! %! &! #!! %!! '!! (!! "!!! "#!! A ctive Power Injection Time (s) Power (W) ! "! #! $! %! &! $!! $!& $"! $"& $#! $#& $$! Voltage Magnitudes Time (s) Voltage (V) ! "! #! $! %! &! %'(& %'() %'(* %'(+ %'(' &! &!(" Voltage Frequency Time (s) Frequency (Hz) DC Source LCL filter DC Source LCL filter DC Source LCL filter 4 DG DC Source LCL filter 1 DG 2 DG 3 DG Load 1 Load 2 12 Z 23 Z 34 Z 1 Z 2 Z 21 / 32
  28. what can we do better? algorithms, detailed models, cyber-physical aspects,

    . . . many groups out there push all these directions heavily
  29. fact: most controllers are essentially nonlinear/distributed/optimal PID emulating synchronous machines

    M ¨ θ(t) virtual inertia = P∗ set-point − D ˙ θ(t) droop control − t 0 ˙ θ(τ) d τ secondary control now: do things differently
  30. Removing the assumptions of droop control idealistic assumptions: quasi-stationary operation

    & phasor coordinates ⇒ future grids: more power electronics, more renewables, & less inertia ⇒ Virtual Oscillator Control: control inverters as limit cycle oscillators [Torres, Moehlis, & Hespanha ’12, Johnson, Dhople, Hamadeh, & Krein ’13] −4 −2 0 2 4 −4 −2 0 2 4 Voltage, v Current, i VOC stabilizes arbitrary waveforms to sinusoidal steady state Droop control only acts on sinusoidal steady state R C L g(v) v + - PWM oscillations stable sustained digitally implemented VOC 22 / 32
  31. Plug’n’play Virtual Oscillator Control (VOC) change of setpoint Oscilloscope plots:

    emergence of synchrony removal of inverter addition of inverter 23 / 32
  32. Crash course on planar limit cycle oscillators L d dt

    i = v C d dt v = −Rv − g(v) − i − igrid ⇒ normalized coordinates ¨ v +v +εk1g (v)· ˙ v = εk2u Li´ enard’s limit cycle condition for virtual oscillator with u = 0: if ε = L/C → 0 ⇒ O(ε) close to harmonic oscillator if damping g (v) is negative near origin & positive elsewhere ⇒ unique & stable limit cycle − + v v R L C ) v ( g deadzone Van der Pol v ˙ !" # # !" " " #$" % & !% !& " = 3 ǫ v ˙ !" # # !" " $ % !$ !% " g g 24 / 32
  33. Backward compatibility to droop [M. Sinha, FD, B. Johnson, &

    S. Dhople, ’14] −4 −2 0 2 4 −4 −2 0 2 4 Voltage, v Current, i VOC stabilizes arbitrary waveforms to sinusoidal steady state Droop control only acts on sinusoidal steady state − + v v R L C ) v ( g ⇒ transf. to polar coordinates, averaging, & generalized power definitions Thm: in vicinity of the limit cycle: VOC ⊃ droop: ˙ θ = constant · reactive power r − r∗ = constant · P∗ − active power 25 / 32
  34. Experimental validation [B. Johnson, M. Sinha, N. Ainsworth, FD, &

    S. Dhople, ’15] 1 VOC ⊃ droop: ˙ θ = constant · reactive power r − r∗ = constant · P∗ − active power max | ω ∆ | + ∗ ω , [VAR] eq Q | rated Q −| | rated Q | ∆ ωeq , [Hz] −750−500−250 0 250 500 750 59 59.5 60 60.5 61 max | ω ∆ − | ∗ ω , [V] eq V , [W] eq P rated P min V oc V 0 250 500 750 108 114 120 126 132 analytic vs. measured droop curves of VOC 26 / 32
  35. Experimental validation [B. Johnson, M. Sinha, N. Ainsworth, FD, &

    S. Dhople, ’15] 1 VOC ⊃ droop 2 VOC ε→0 −→ harmonic oscillator with ε/8 harmonic ratio 3:1 3 VOC: faster & better transients than droop-controlled inverters δ3:1 ε, [mΩ] 5 10 15 20 25 30 0 5 10 15 3 − 10 × 3 − 10 × 475 500 525 20 40 60 0 10 5 switching harmonics δ3:1 :1 n δ n harmonic order, ε/8 harmonic ratio 3:1 t[s] ||Πv||2 [V] 0 0.25 0.5 0.75 1 0 25 50 75 100 VO-controlled inverters Droop-controlled inverters synchronization error: VOC vs. droop 27 / 32
  36. Analysis of VOC system [S. Dhople, B. Johnson, FD, &

    A. Hamadeh ’13] Nonlinear oscillators: passive circuit impedance zckt(s) active current source g(v) Co-evolving network: RLC network & loads are LTI Kron reduction: eliminate loads Stability analysis: homogeneity assumption: identical reduced oscillators Lure system formulation incremental IQC analysis sync for strong coupling ckt z − + ≡ g i ) v ( g v i 14 z 24 z Kron reduction 34 z 3 3 2 2 3 i 2 i − + 4 3 v − + 2 v 1 1 1 i 2 i 1 i 3 i − + 1 v − + 1 v − + 2 v − + 3 v 13 z 12 z 23 z F(Zckt (s), Yred (s)) g - v i 28 / 32
  37. Variation II: CH: no centralized dispatch but power trade in

    energy markets ⇓ game-theoretic formulation of optimal secondary control
  38. Market formulation of secondary control [FD & S. Grammatico ’15]

    Competitive spot market: 1 given a prize λ, player i bids ui = argmin ui {Ji (ui ) − λui } = Ji −1(λ) 2 market clearing prize λ from 0 = i P∗ i + ui = i P∗ i + Ji −1(λ ) Auction (dual decomposition): 1 u+ i = argmin ui {Ji (ui ) − λui } = Ji −1(λ) 2 λ+ = λ− i P∗ i + u+ i = λ− ·ωsync ⇒ converges to optimal economic dispatch Broadcast controller: 1 convex measurement: k · ˙ λ(t) = i Ci ˙ θi (t) 2 local allocation: ui (t) = Ji −1(λ(t)) Time in [s] 2 4 6 8 10 Decentralized : Frequency Time in [s] 0 2 4 6 8 10 Frequency in [Hz] 59.2 59.4 59.6 59.8 60 60.2 60.4 60.6 60.8 DAI : Frequency Time in [s] 0 2 4 6 8 10 Frequency in [Hz] 59.2 59.4 59.6 59.8 60 60.2 60.4 60.6 60.8 Dual-Decomposition : Frequency Frequency in [Hz] 5 5 5 5 6 6 6 6 29 / 32
  39. The power flow manifold & linear tangent approximation node 2

    node 1 v1 = 1, θ1 = 0 y = 0.4 − 0.8j v2, θ2 p2, q2 p1, q1 1 0.5 p 2 0 -0.5 0 0.5 q 2 1 1.2 1 0.8 0.6 0.4 v 2 1 power flow manifold: F(x) = 0 2 normal space spanned by ∂F(x) ∂x x∗ 3 tangent space: ∂F(x) ∂x T x∗ (x − x∗) = 0 ⇒ sparse & implicit model is structure- preserving → distributed control 1.5 1 0.5 q 2 0 -0.5 -1 1.5 1 0.5 p 2 0 -0.5 -1 1.2 1 1.4 0.8 0.6 v 2 30 / 32
  40. Online optimization on power flow manifold with Adrian Hauswirth, Saverio

    Bolognani, & Gabriela Hug ◦ manifold optimization → gradient flow on power flow manifold ◦ online optimization → controller realizes gradient flow in closed loop power flow manifold tangent space new operating point projected gradient gradient of cost operating point projected gradient step (distributed algorithm) new operating point (physical system) injections measurements 0 50 100 150 200 250 300 350 400 450 500 730 740 750 760 770 780 790 800 810 Objective Value [$] realized cost lower bound 0 50 100 150 200 250 300 350 400 450 500 1.01 1.02 1.03 1.04 1.05 1.06 Voltage Levels [p.u.] applied to optimal voltage control in IEEE 30 grid 31 / 32
  41. Conclusions Summary • primary decentralized droop • distributed secondary control

    • economic dispatch optimization • experimental validation • beyond emulation & PID strategies ◦ primary virtual oscillator control ◦ markets turned into controllers ◦ control via online optimization Ongoing work & next steps • better models & sharper analysis • optimize transient control behavior • alternatives not based on emulation of synchronous machines & PID … … … source # i Secondary Control Tertiary Control Primary Control Transceiver … … … Power System 32 / 32
  42. Acknowledgements J. Simpson-Porco Q. Shafiee M. Sinha B. Gentile A.

    Hamadeh S. Dhople B. Johnson S. Zampieri J. Guerrero F. Bullo J. Zhao J. Schiffer S. Grammatico N. Ainsworth S. Bolognani