Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D Gaussian Splatting for Real-Time Radiance Fi...
Search
frkake
March 05, 2024
Research
0
450
3D Gaussian Splatting for Real-Time Radiance Field Rendering
frkake
March 05, 2024
Tweet
Share
More Decks by frkake
See All by frkake
[CorrMLP] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
frkake
0
1.3k
Neural Network Diffusion
frkake
0
120
Segment Anything + Alpha
frkake
0
140
[RetNet] Retentive Network: A Successor to Transformer for Large Language Models
frkake
0
120
Muse: Text-To-Image Generation via Masked Generative Transformers
frkake
0
56
Other Decks in Research
See All in Research
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
260
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
湯村研究室の紹介2024 / yumulab2024
yumulab
0
240
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
250
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
650
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
320
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
110
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
110
第79回 産総研人工知能セミナー 発表資料
agiats
1
120
marukotenant01/tenant-20240916
marketing2024
0
410
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
100
The Fellowship of Trust in AI
tomzimmermann
0
130
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.2k
Facilitating Awesome Meetings
lara
49
6k
4 Signs Your Business is Dying
shpigford
180
21k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Statistics for Hackers
jakevdp
796
220k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
37
1.8k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
404
65k
Fireside Chat
paigeccino
32
3k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Practical Orchestrator
shlominoach
186
10k
Transcript
3D Gaussian Splatting for Real-Time Radiance Field Rendering 2024/3/6 飯田啄巳
概要 タイトル :3D Gaussian Splatting for Real-Time Radiance Field Rendering
著者 :Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, George Drettakis 所属 :Inria, Université Côte d'Azur, MPI Informatik 学会 :SIGGRAPH 2023 特徴: • 高速な学習 • 高速な描画(>=30fps) • 高解像度(1080p)
わかりやすい記事でまず紹介 初期状態:SfMで得られたスパースな点群 点群を増やしたり減らしたりする 3D Gaussian 3D Gaussians 一つ一つ違う • 位置
• 形状(共分散行列) • 色 • 透明度(α) 透明度αを0とした場合 3D Gaussian(今回) Triangle(通常) プリミティブを3D Gaussianにしてシーンを構成 https://huggingface.co/blog/gaussian-splatting より引用
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンをカメラ座標系に投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御 繰り返す
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンをカメラ座標系に投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御 こういうやつを使う ランダム値でもそこそこ良いらしい 3Dガウシアンの形状表現形式 × 𝛼 三次元共分散行列(これがガウシアンの形状を決める) 他に以下の情報を持つ • 位置 • 透明度(𝛼) • 球面調和係数(色) 3Dガウシアンは 異方性をもつオブジェクトも表現可能
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンを2Dに投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御 世界座標系での 3D共分散 カメラ座標系での 2D共分散 視点変換行列 透視投影変換のアフィン近似のヤコビアン Zwicker[2001a]によるとこういう変換形式になる projection 共分散行列は半正定値でないと 物理的な意味を持たない =最適化しにくい → 楕円体として表せば良いのでは? 最適化の対象なんだけど… スケール行列&回転行列
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンを2Dに投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御 rasterize ポリゴン(ガウシアン)で深度ソート (Radix Sort) カスタムCUDAカーネルを作ったり、 GPUアクセラレートフレームワークを使ったり 自動微分はせず、予め微分の式を作っておいたり… タイルベースのラスタライズ … 16x16 ビュー台形との信頼区間が99%のガウシアンだけ残す (意味わかってない) 16x16 16x16 16x16 16x16 … タイルごとにスレッドを立ち上げてラスタライズ
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンをカメラ座標系に投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンをカメラ座標系に投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御 100イテレーションごとに緻密化、𝛼 < 𝜖𝛼 (透明)の場合ガウシアンを破棄 小さいガウシアンは クローン 大きいガウシアンは 分割
処理フロー 1. SfMの点群を初期値として開始 2. 3Dガウシアンをカメラ座標系に投影 3. 投影したガウシアンをラスタライズ 4. 描画画像とGTとで損失計算 5.
ガウシアンの密度制御 繰り返す • NNは使ってない • 自動微分はやらない • 全部のガウシアンが勾配を受け取る=制限なし=シーン依存のハイパラ不要 手計算してます
結果:実データ Mip-NeRF360 :高品質だけど、時間かかる Plenoxels, InstantNGP :速いけど低品質 3D Gaussian Splatting :高品質かつ速い
7Kイテレーションでもそこそこ良い=収束速い
Ablation Study:初期値の重要性 合成データ(Blender)だと いい加減な初期値(ランダム)でも良い結果 ランダムな初期値でも全体的には良い結果 しかし、背景部分にモヤ(floaters)が出現
Ablation Study:ガウシアンの分割やクローンをやらない場合などの違い 大きなガウシアンを分割しないと 背景がだめになる (細かい部分に適応できない?) 小さなガウシアンをクローンしないと 収束が弱くなる
Ablation Study:3Dガウシアンが異方性を持つ必要性 割りと露骨に球体が現れる
Ablation Study:諸々の効果 • 球面調和関数(Spherical Harmonics, SH) 視点依存の効果を付与できる
Limitations(というより性質に近い) • 観測シーンが少ない場合はアーチファクトが発生 • 大きなガウシアンが作られた場合にポッピングが発生(LODの切り替えタイミングで起きるアーチファクト) • 視点位置のアピアランスの影響? • ラスタライザのガードバンドで棄却される?(説明省きました) •
細長いアーチファクトやポツポツとしたアーチファクトになりがち
思ったこと メタボールっぽい Fuzzy Metaballsというのが1年前にあった https://kanamori.cs.tsukuba.ac.jp/jikken/inner/metaball.pdf
補足
Plenoxels https://alexyu.net/plenoxels/
None
Fuzzy Metaballs https://leonidk.com/fuzzy-metaballs/