Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RetNet] Retentive Network: A Successor to Tran...
Search
frkake
March 05, 2024
Research
0
270
[RetNet] Retentive Network: A Successor to Transformer for Large Language Models
frkake
March 05, 2024
Tweet
Share
More Decks by frkake
See All by frkake
[CorrMLP] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
frkake
0
1.4k
Neural Network Diffusion
frkake
0
220
3D Gaussian Splatting for Real-Time Radiance Field Rendering
frkake
0
690
Segment Anything + Alpha
frkake
0
230
Muse: Text-To-Image Generation via Masked Generative Transformers
frkake
0
100
Other Decks in Research
See All in Research
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
170
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
190
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
180
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
250
ことばの意味を計算するしくみ
verypluming
11
2.5k
言語モデルの内部機序:解析と解釈
eumesy
PRO
41
17k
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
780
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
480
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
22
11k
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
330
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
190
Individual tree crown delineation in high resolution aerial RGB imagery using StarDist-based model
satai
3
270
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
46
14k
Making Projects Easy
brettharned
116
6.2k
Embracing the Ebb and Flow
colly
85
4.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Thoughts on Productivity
jonyablonski
69
4.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.6k
Facilitating Awesome Meetings
lara
54
6.4k
Transcript
(RetNet) Retentive Network: A Successor to Transformer for Large Language
Models 2023/08/04 飯田啄巳
背景:RetNetの目指すところ Transformer 言語モデルのデファクトになってるけど、 👍高パフォーマンス 👎🏽O(N) Complexity 👎🏽Key-Valueストアでメモリ効率悪い 👎🏽シーケンス長いと、レイテンシも悪い Linearized Attention
アテンションスコアのexp(𝑞 ⋅ k)を𝜙 𝑞 ⋅ 𝜙(𝑘)で書き換え、自己回帰推論可能にした 👎🏽性能悪い Recurrent Network 👎🏽学習の並列性ない Others: Attentionを書き換える(S4など) 👎🏽性能悪い RetNet 並列表現 → 👍並列学習 リカレント表現(実装も楽) → 👍メモリと計算の両面でO(1)推論 チャンクごとのリカレント表現(chunkwise recurrent) → 👍長いシーケンスに対応
手法:Retentive Networks 全体の流れ 1. 入力 :𝑥 = 𝑥1 , …
𝑥 𝑥 のシーケンス 2. 各トークンの次元を𝑑𝑚𝑜𝑑𝑒𝑙 にする :𝑋0 = 𝑥1 , … , 𝑥 𝑥 ∈ ℝ 𝑥 ×𝑑𝑚𝑜𝑑𝑒𝑙 3. 自己回帰的に次の状態を推定 :𝑋𝑙 = 𝑅𝑒𝑡𝑁𝑒𝑡𝑙 𝑋𝑙−1 , 𝑙 ∈ 1, 𝐿 こんなイメージ? 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑𝑚𝑜𝑑𝑒𝑙 𝑥1 𝑥2 𝑥3 𝑥 𝑥 MSR (Multi-Scale Retention) FFN (Feed-Forward Network) RetNet
手法:Retentionモジュールの仕組み 状態𝒔𝑛 を介して、𝒐𝑛 を出力 Aの対角化の式 を使うと xPosという相対位置埋め込みの表現形式 𝛾をスカラ化 共役転置 Transformerの式
(並列化可能) リカレントモデルの式 RNNとTransformerの式の関係性を考えてみる ハイブリッド表現(Chunkwise Recurrent Representation) 長いシーケンスの学習効率化 要素数Bのチャンクを作る チャンク内では並列化 チャンク外では再帰 𝑖番目のチャンク 三段階正規化(スケーリング) 未来情報使わないように 近傍の重み強めに
手法:Retentionモジュールの仕上げ(ゲート化・マルチスケール化) マルチヘッド化 マルチスケール化 ヘッドごとに異なる𝛾を使う ヘッドの数 ゲート化 swishを使う 正規化層とかもちゃんと書くと… GroupNormは各ヘッドの出力を正規化(SubLNという方法に基づくらしい) ヘッドごとに異なる𝛾を使うとヘッドごとに分布が変わってくるので、ヘッドごとに正規化
全体まとめ 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑𝑚𝑜𝑑𝑒𝑙 𝑥1 𝑥2 𝑥3 𝑥 𝑥 MSR (Multi-Scale
Retention) FFN (Feed-Forward Network) RetNet さっきのMSR (Multi-Scale Retention)をTransformerブロックみたいに積んで完成! 学習時 parallel(シーケンス内並列化)or chunkwise recurrent(チャンク内並列化) parallel chunkwise recurrent 推論時 recurrentを使う → 自己回帰推論 = O(1)
実装的には 未来情報使わないように 近傍の重み強めに
実装的には 要素数Bのチャンクを作る チャンク内では並列化 チャンク外では再帰
実験:モデルサイズとその性能 パラメータ数 Transformer RetNet 𝑠𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑊𝑄 , 𝑊𝐾 ,
𝑊𝑉 , 𝑊𝑂 = 4𝑑2 𝐹𝐹𝑁 = 8𝑑2 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 4𝑑 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 𝑊𝑄 , 𝑊𝐾 ∈ ℝ𝑑×𝑑, 𝑊𝐺 , 𝑊𝑉 ∈ ℝ𝑑×2𝑑, 𝑊𝑂 ∈ ℝ2𝑑×𝑑 = 8𝑑2 混乱度、低いほうが良いらしい。 (確率分布を比較する指標)
実験:Zero-shot, Few-shotの性能 Transformerよりもいいです
実験:Transformerとのメモリ&スループットの比較 Kernel FusionとFlashAttentionは除外
実験:推論コスト GPUメモリ • TransformerはKVキャッシュで線形に増加 • RetNetは長いシーケンスでも同じ スループット • Transformerは長くなると低下 •
RetNetはずっと高いスループット レイテンシ • Transformerはバッチサイズ大 → レイテンシ遅 • RetNetはずっと速い
実験:周辺技術との関係性と性能比較 Query, Keyが Content-unaware attention free& 位置埋め込みを指数減衰に置換 →再帰 関係性 性能比較
Ablation Study (𝛾 = 1)
None
使い方や実際の実装 切り替えて使う感じ モデルのロード方法は書いてあるケド…運用方法は?