Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RetNet] Retentive Network: A Successor to Tran...
Search
frkake
March 05, 2024
Research
0
240
[RetNet] Retentive Network: A Successor to Transformer for Large Language Models
frkake
March 05, 2024
Tweet
Share
More Decks by frkake
See All by frkake
[CorrMLP] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
frkake
0
1.4k
Neural Network Diffusion
frkake
0
210
3D Gaussian Splatting for Real-Time Radiance Field Rendering
frkake
0
650
Segment Anything + Alpha
frkake
0
210
Muse: Text-To-Image Generation via Masked Generative Transformers
frkake
0
93
Other Decks in Research
See All in Research
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
160
Scale-Aware Recognition in Satellite images Under Resource Constraints
satai
3
170
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
1.8k
言語モデルによるAI創薬の進展 / Advancements in AI-Driven Drug Discovery Using Language Models
tsurubee
2
290
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
130
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
120
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
170
[輪講] Transformer Layers as Painters
nk35jk
4
750
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
480
DPUを用いたマルチタスクDNN表情認識システムのFPGA実装
takuto_andtt
0
140
研究テーマのデザインと研究遂行の方法論
hisashiishihara
1
510
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
150
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
A better future with KSS
kneath
239
17k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Documentation Writing (for coders)
carmenintech
69
4.7k
How STYLIGHT went responsive
nonsquared
99
5.5k
The Pragmatic Product Professional
lauravandoore
33
6.5k
A designer walks into a library…
pauljervisheath
205
24k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Transcript
(RetNet) Retentive Network: A Successor to Transformer for Large Language
Models 2023/08/04 飯田啄巳
背景:RetNetの目指すところ Transformer 言語モデルのデファクトになってるけど、 👍高パフォーマンス 👎🏽O(N) Complexity 👎🏽Key-Valueストアでメモリ効率悪い 👎🏽シーケンス長いと、レイテンシも悪い Linearized Attention
アテンションスコアのexp(𝑞 ⋅ k)を𝜙 𝑞 ⋅ 𝜙(𝑘)で書き換え、自己回帰推論可能にした 👎🏽性能悪い Recurrent Network 👎🏽学習の並列性ない Others: Attentionを書き換える(S4など) 👎🏽性能悪い RetNet 並列表現 → 👍並列学習 リカレント表現(実装も楽) → 👍メモリと計算の両面でO(1)推論 チャンクごとのリカレント表現(chunkwise recurrent) → 👍長いシーケンスに対応
手法:Retentive Networks 全体の流れ 1. 入力 :𝑥 = 𝑥1 , …
𝑥 𝑥 のシーケンス 2. 各トークンの次元を𝑑𝑚𝑜𝑑𝑒𝑙 にする :𝑋0 = 𝑥1 , … , 𝑥 𝑥 ∈ ℝ 𝑥 ×𝑑𝑚𝑜𝑑𝑒𝑙 3. 自己回帰的に次の状態を推定 :𝑋𝑙 = 𝑅𝑒𝑡𝑁𝑒𝑡𝑙 𝑋𝑙−1 , 𝑙 ∈ 1, 𝐿 こんなイメージ? 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑𝑚𝑜𝑑𝑒𝑙 𝑥1 𝑥2 𝑥3 𝑥 𝑥 MSR (Multi-Scale Retention) FFN (Feed-Forward Network) RetNet
手法:Retentionモジュールの仕組み 状態𝒔𝑛 を介して、𝒐𝑛 を出力 Aの対角化の式 を使うと xPosという相対位置埋め込みの表現形式 𝛾をスカラ化 共役転置 Transformerの式
(並列化可能) リカレントモデルの式 RNNとTransformerの式の関係性を考えてみる ハイブリッド表現(Chunkwise Recurrent Representation) 長いシーケンスの学習効率化 要素数Bのチャンクを作る チャンク内では並列化 チャンク外では再帰 𝑖番目のチャンク 三段階正規化(スケーリング) 未来情報使わないように 近傍の重み強めに
手法:Retentionモジュールの仕上げ(ゲート化・マルチスケール化) マルチヘッド化 マルチスケール化 ヘッドごとに異なる𝛾を使う ヘッドの数 ゲート化 swishを使う 正規化層とかもちゃんと書くと… GroupNormは各ヘッドの出力を正規化(SubLNという方法に基づくらしい) ヘッドごとに異なる𝛾を使うとヘッドごとに分布が変わってくるので、ヘッドごとに正規化
全体まとめ 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑𝑚𝑜𝑑𝑒𝑙 𝑥1 𝑥2 𝑥3 𝑥 𝑥 MSR (Multi-Scale
Retention) FFN (Feed-Forward Network) RetNet さっきのMSR (Multi-Scale Retention)をTransformerブロックみたいに積んで完成! 学習時 parallel(シーケンス内並列化)or chunkwise recurrent(チャンク内並列化) parallel chunkwise recurrent 推論時 recurrentを使う → 自己回帰推論 = O(1)
実装的には 未来情報使わないように 近傍の重み強めに
実装的には 要素数Bのチャンクを作る チャンク内では並列化 チャンク外では再帰
実験:モデルサイズとその性能 パラメータ数 Transformer RetNet 𝑠𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑊𝑄 , 𝑊𝐾 ,
𝑊𝑉 , 𝑊𝑂 = 4𝑑2 𝐹𝐹𝑁 = 8𝑑2 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 4𝑑 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 𝑊𝑄 , 𝑊𝐾 ∈ ℝ𝑑×𝑑, 𝑊𝐺 , 𝑊𝑉 ∈ ℝ𝑑×2𝑑, 𝑊𝑂 ∈ ℝ2𝑑×𝑑 = 8𝑑2 混乱度、低いほうが良いらしい。 (確率分布を比較する指標)
実験:Zero-shot, Few-shotの性能 Transformerよりもいいです
実験:Transformerとのメモリ&スループットの比較 Kernel FusionとFlashAttentionは除外
実験:推論コスト GPUメモリ • TransformerはKVキャッシュで線形に増加 • RetNetは長いシーケンスでも同じ スループット • Transformerは長くなると低下 •
RetNetはずっと高いスループット レイテンシ • Transformerはバッチサイズ大 → レイテンシ遅 • RetNetはずっと速い
実験:周辺技術との関係性と性能比較 Query, Keyが Content-unaware attention free& 位置埋め込みを指数減衰に置換 →再帰 関係性 性能比較
Ablation Study (𝛾 = 1)
None
使い方や実際の実装 切り替えて使う感じ モデルのロード方法は書いてあるケド…運用方法は?