Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RetNet] Retentive Network: A Successor to Tran...
Search
frkake
March 05, 2024
Research
0
280
[RetNet] Retentive Network: A Successor to Transformer for Large Language Models
frkake
March 05, 2024
Tweet
Share
More Decks by frkake
See All by frkake
[CorrMLP] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
frkake
0
1.4k
Neural Network Diffusion
frkake
0
230
3D Gaussian Splatting for Real-Time Radiance Field Rendering
frkake
0
720
Segment Anything + Alpha
frkake
0
240
Muse: Text-To-Image Generation via Masked Generative Transformers
frkake
0
110
Other Decks in Research
See All in Research
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
410
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
480
20250624_熊本経済同友会6月例会講演
trafficbrain
1
110
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
320
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.5k
90 分で学ぶ P 対 NP 問題
e869120
17
7.5k
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
280
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
120
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
150
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
最適化と機械学習による問題解決
mickey_kubo
0
140
数理最適化と機械学習の融合
mickey_kubo
15
8.8k
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
BBQ
matthewcrist
89
9.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Building an army of robots
kneath
306
45k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Six Lessons from altMBA
skipperchong
28
3.8k
GraphQLとの向き合い方2022年版
quramy
48
14k
Transcript
(RetNet) Retentive Network: A Successor to Transformer for Large Language
Models 2023/08/04 飯田啄巳
背景:RetNetの目指すところ Transformer 言語モデルのデファクトになってるけど、 👍高パフォーマンス 👎🏽O(N) Complexity 👎🏽Key-Valueストアでメモリ効率悪い 👎🏽シーケンス長いと、レイテンシも悪い Linearized Attention
アテンションスコアのexp(𝑞 ⋅ k)を𝜙 𝑞 ⋅ 𝜙(𝑘)で書き換え、自己回帰推論可能にした 👎🏽性能悪い Recurrent Network 👎🏽学習の並列性ない Others: Attentionを書き換える(S4など) 👎🏽性能悪い RetNet 並列表現 → 👍並列学習 リカレント表現(実装も楽) → 👍メモリと計算の両面でO(1)推論 チャンクごとのリカレント表現(chunkwise recurrent) → 👍長いシーケンスに対応
手法:Retentive Networks 全体の流れ 1. 入力 :𝑥 = 𝑥1 , …
𝑥 𝑥 のシーケンス 2. 各トークンの次元を𝑑𝑚𝑜𝑑𝑒𝑙 にする :𝑋0 = 𝑥1 , … , 𝑥 𝑥 ∈ ℝ 𝑥 ×𝑑𝑚𝑜𝑑𝑒𝑙 3. 自己回帰的に次の状態を推定 :𝑋𝑙 = 𝑅𝑒𝑡𝑁𝑒𝑡𝑙 𝑋𝑙−1 , 𝑙 ∈ 1, 𝐿 こんなイメージ? 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑𝑚𝑜𝑑𝑒𝑙 𝑥1 𝑥2 𝑥3 𝑥 𝑥 MSR (Multi-Scale Retention) FFN (Feed-Forward Network) RetNet
手法:Retentionモジュールの仕組み 状態𝒔𝑛 を介して、𝒐𝑛 を出力 Aの対角化の式 を使うと xPosという相対位置埋め込みの表現形式 𝛾をスカラ化 共役転置 Transformerの式
(並列化可能) リカレントモデルの式 RNNとTransformerの式の関係性を考えてみる ハイブリッド表現(Chunkwise Recurrent Representation) 長いシーケンスの学習効率化 要素数Bのチャンクを作る チャンク内では並列化 チャンク外では再帰 𝑖番目のチャンク 三段階正規化(スケーリング) 未来情報使わないように 近傍の重み強めに
手法:Retentionモジュールの仕上げ(ゲート化・マルチスケール化) マルチヘッド化 マルチスケール化 ヘッドごとに異なる𝛾を使う ヘッドの数 ゲート化 swishを使う 正規化層とかもちゃんと書くと… GroupNormは各ヘッドの出力を正規化(SubLNという方法に基づくらしい) ヘッドごとに異なる𝛾を使うとヘッドごとに分布が変わってくるので、ヘッドごとに正規化
全体まとめ 𝑑𝑚𝑜𝑑𝑒𝑙 𝑑𝑚𝑜𝑑𝑒𝑙 𝑥1 𝑥2 𝑥3 𝑥 𝑥 MSR (Multi-Scale
Retention) FFN (Feed-Forward Network) RetNet さっきのMSR (Multi-Scale Retention)をTransformerブロックみたいに積んで完成! 学習時 parallel(シーケンス内並列化)or chunkwise recurrent(チャンク内並列化) parallel chunkwise recurrent 推論時 recurrentを使う → 自己回帰推論 = O(1)
実装的には 未来情報使わないように 近傍の重み強めに
実装的には 要素数Bのチャンクを作る チャンク内では並列化 チャンク外では再帰
実験:モデルサイズとその性能 パラメータ数 Transformer RetNet 𝑠𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑊𝑄 , 𝑊𝐾 ,
𝑊𝑉 , 𝑊𝑂 = 4𝑑2 𝐹𝐹𝑁 = 8𝑑2 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 4𝑑 𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 𝑊𝑄 , 𝑊𝐾 ∈ ℝ𝑑×𝑑, 𝑊𝐺 , 𝑊𝑉 ∈ ℝ𝑑×2𝑑, 𝑊𝑂 ∈ ℝ2𝑑×𝑑 = 8𝑑2 混乱度、低いほうが良いらしい。 (確率分布を比較する指標)
実験:Zero-shot, Few-shotの性能 Transformerよりもいいです
実験:Transformerとのメモリ&スループットの比較 Kernel FusionとFlashAttentionは除外
実験:推論コスト GPUメモリ • TransformerはKVキャッシュで線形に増加 • RetNetは長いシーケンスでも同じ スループット • Transformerは長くなると低下 •
RetNetはずっと高いスループット レイテンシ • Transformerはバッチサイズ大 → レイテンシ遅 • RetNetはずっと速い
実験:周辺技術との関係性と性能比較 Query, Keyが Content-unaware attention free& 位置埋め込みを指数減衰に置換 →再帰 関係性 性能比較
Ablation Study (𝛾 = 1)
None
使い方や実際の実装 切り替えて使う感じ モデルのロード方法は書いてあるケド…運用方法は?