Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実践的データ基盤への処方箋輪読会_20220203
Search
Hiroaki ONO
February 03, 2022
Technology
0
740
実践的データ基盤への処方箋輪読会_20220203
Hiroaki ONO
February 03, 2022
Tweet
Share
More Decks by Hiroaki ONO
See All by Hiroaki ONO
改正個人情報保護法実務ガイドブック輪読会_20220316
hihihiroro
0
350
Kubernetesに入門したい
hihihiroro
47
15k
Dockerコマンド
hihihiroro
2
890
20170602_sqlstudy
hihihiroro
2
650
Other Decks in Technology
See All in Technology
AI Agentを「期待通り」に動かすために:設計アプローチの模索と現在地
kworkdev
PRO
2
460
AWS全冠芸人が見た世界 ~資格取得より大切なこと~
masakiokuda
5
6.2k
システムとの会話から生まれる先手のDevOps
kakehashi
PRO
0
290
PagerDuty×ポストモーテムで築く障害対応文化/Building a culture of incident response with PagerDuty and postmortems
aeonpeople
1
320
持続可能なドキュメント運用のリアル: 1年間の成果とこれから
akitok_
1
190
watsonx.data上のベクトル・データベース Milvusを見てみよう/20250418-milvus-dojo
mayumihirano
0
120
ElixirがHW化され、最新CPU/GPU/NWを過去のものとする数万倍、高速+超省電力化されたWeb/動画配信/AIが動く日
piacerex
0
150
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
160
AIと開発者の共創: エージェント時代におけるAIフレンドリーなDevOpsの実践
bicstone
1
320
Рекомендации с нуля: как мы в Lamoda превратили главную страницу в ключевую точку входа для персонализированного шоппинга. Данил Комаров, Data Scientist, Lamoda Tech
lamodatech
0
750
JPOUG Tech Talk #12 UNDO Tablespace Reintroduction
nori_shinoda
2
150
プロダクト開発におけるAI時代の開発生産性
shnjtk
2
240
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
183
22k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
GitHub's CSS Performance
jonrohan
1030
460k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Music & Morning Musume
bryan
47
6.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
670
How to Ace a Technical Interview
jacobian
276
23k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Transcript
Hiroaki ONO (@hihihiroro) 実践的データ基盤への処方箋 輪読会 2022/02/03 (2-5 〜 2-8)
サマリ • データベースからの収集方法 ◦ SQL 利用 ◦ ファイル経由 ◦ 更新ログ収集
• 収集方法はうまく使い分ける ◦ 取得元データベースの種類 ◦ データベースへの負荷 ◦ 予算 など
目次 2-5 SQLを利用したデータベース収集ではデータベースへの負荷を意識する 2-6 データベースの負荷を考慮したデータ収集では、エクスポートやダンプファイル活用を視野に入れる 2-7 更新ログ経由のデータベース収集はデータベースの負荷を最小限にしてリアルタイムに収集できる 2-8 各データベースの収集の特徴と置かれた状況を理解して使い分ける
目次 2-5 SQLを利用したデータベース収集ではデータベースへの負荷を意識する 2-6 データベースの負荷を考慮したデータ収集では、エクスポートやダンプファイル活用を視野に入れる 2-7 更新ログ経由のデータベース収集はデータベースの負荷を最小限にしてリアルタイムに収集できる 2-8 各データベースの収集の特徴と置かれた状況を理解して使い分ける
• 企業に重要なデータはDBへ蓄積されている ◦ 業務はコンピュータシステムで行われることがほとんど ◦ データ構造を決めて管理 ◦ データの一貫性を保つ • データの例
◦ 顧客との取引データ ◦ 商品や在庫のデータ ◦ 企業会計のデータなど 重要なデータはDBへ 本のページ p84
• メリット ◦ 実装が簡単で敷居が低い、開発できるエンジニアが多数 ◦ 取得対象をSQL で加工、絞り込みが可能 • デメリット ◦
取得元DB へ高い負荷がかかる ▪ データ収集クエリによるキャッシュ汚染 ▪ 長時間クエリによるリソース消費 ▪ ディスク容量枯渇によるシステム不安定 DBからの収集 SQL実行 (1/4) 本番DB から全件取得 本のページ p85-86
• ポイント ◦ 取得データが減るためデータ収集時間の削減が見込める ▪ データ追記型 : 追加されたデータを収集し挿入 ▪ データ更新型
: 更新されたデータを収集し更新、挿入 ◦ 取得の際にインデックスを利用しないと負荷軽減にはならない可能性あり DBからの収集 SQL実行 (2/4) 本番DB から一部取得 本のページ p87-89
DBからの収集 SQL実行 (3/4) 本番DB から並列取得 • ポイント ◦ 並列実行するためデータ収集時間の削減が見込める ▪
取得元のストレージの分散状況により遅くなる可能性あり ▪ 取得の際にインデックスを利用しないと負荷軽減にはならない可能性あり 本のページ p90-91
• ポイント ◦ クエリ収集専用DB なので負荷をあまり考える必要がない ▪ レプリカを作成するために費用、手間がかかる DBからの収集 SQL実行 (4/4)
レプリカDB から取得 本のページ p91-92
目次 2-5 SQLを利用したデータベース収集ではデータベースへの負荷を意識する 2-6 データベースの負荷を考慮したデータ収集では、エクスポートやダンプファイル活用を視野に入れる 2-7 更新ログ経由のデータベース収集はデータベースの負荷を最小限にしてリアルタイムに収集できる 2-8 各データベースの収集の特徴と置かれた状況を理解して使い分ける
DBからの収集 エクスポート • メリット ◦ SQL 実行よりもDB への負荷が小さい ◦ DB
によってはエクスポート時に絞り込みができることがある • デメリット ◦ エクスポートファイルがテーブルサイズより大きくなることがある ◦ SQL 実行ほどではないが DB への負荷がある 本のページ p93-94
DBからの収集 ダンプファイル • メリット ◦ SQL 実行よりもDB への負荷が小さい ◦ データの変換がいらないため
DB への負荷が小さい • デメリット ◦ 復元用DB を用意する必要がある ◦ ダンプ時に絞り込みなどができない 本のページ p94-95
目次 2-5 SQLを利用したデータベース収集ではデータベースへの負荷を意識する 2-6 データベースの負荷を考慮したデータ収集では、エクスポートやダンプファイル活用を視野に入れる 2-7 更新ログ経由のデータベース収集はデータベースの負荷を最小限にしてリアルタイムに収集できる 2-8 各データベースの収集の特徴と置かれた状況を理解して使い分ける
DBからの収集 更新ログ • メリット ◦ DB に対する負荷が小さい ◦ データ収集速度が向上、必要帯域が小さくて良い •
デメリット ◦ 専用の製品を使う必要がある ◦ 復元用DB の用意など構築が複雑化 本のページ p96-99 データに対する操作
DBからの収集 更新ログ CDC • メリット ◦ ほぼリアルタイムにDB のデータを収集 ◦ 復元用DB
が不必要 • デメリット ◦ 専用の製品を使う必要がある ◦ DB に更新が多い場合、収集が間に合わない可能性がある ◦ 処理が止まったときの再実行が困難 本のページ p100-102
目次 2-5 SQLを利用したデータベース収集ではデータベースへの負荷を意識する 2-6 データベースの負荷を考慮したデータ収集では、エクスポートやダンプファイル活用を視野に入れる 2-7 更新ログ経由のデータベース収集はデータベースの負荷を最小限にしてリアルタイムに収集できる 2-8 各データベースの収集の特徴と置かれた状況を理解して使い分ける
DBからの収集方法まとめ • 使い分けのコツ ◦ 取得元DB の重要度 ▪ 高・低 ◦ 使える予算
▪ 潤沢・不足 ◦ ユースケース ▪ リアルタイム収集 ▪ 取得データ削減 本のページ p102-104