Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Real-Time_Bidding_Algorithms_for_performance-Ba...
Search
jujudubai
August 17, 2014
Research
0
740
Real-Time_Bidding_Algorithms_for_performance-Based_Display_Ad_Allocation.pdf
いろいろと参考にしながら、要約を。
この論文はとても参考になります。
jujudubai
August 17, 2014
Tweet
Share
More Decks by jujudubai
See All by jujudubai
juju1008
juju1008
1
4.2k
Realtime Bid Optimization with Smooth Budget Delivery in Online Advertising
juju1008
2
910
Estimating Conversion Rate in Display Advertising from Past Performance Data
juju1008
1
900
Other Decks in Research
See All in Research
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
210
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
210
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
620
Self-supervised audiovisual representation learning for remote sensing data
satai
3
200
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
150
CHaserWeb:ブラウザ上で動作する対戦型プログラミング学習環境の提案と評価 / i2025-inoue
yumulab
0
190
NLP2025参加報告会 LT資料
hargon24
1
310
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
330
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
250
3D Gaussian Splattingによる高効率な新規視点合成技術とその応用
muskie82
5
2.3k
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1k
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
Featured
See All Featured
A better future with KSS
kneath
239
17k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Thoughts on Productivity
jonyablonski
69
4.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Become a Pro
speakerdeck
PRO
28
5.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
910
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Review: “Real-Time Bidding Algorithms for performance-Based Display Ad Allocation” Tatsuki
Sugio
ຊจͷ֓ཁ A. demand-side, supply-side • ༧ࢉࢿͷ࠷దԽɺऩӹʢrevenueʣͷ࠷େԽ • RTB Exchangeʹ͓͍ͯɺimpຖʹΩϟϯϖʔϯΛׂΓͯΔ ➡
ϦΞϧλΠϜͰͷ࠷దԽʹΑΓ࣮ݱ ➡ errorͷେ͖͞ʹԠͯ͡ύϥϝʔλΛௐ B. ՝ • มɺ੍͕ଟ͍ ➡ ઢܗܭըͷରͷղʹΑΓ࣮ݱ • ΦϑϥΠϯ࠷దԽͰཻ͕ૈ͍ ࢢͷมԽʹରͯ͠దԠతͳbid͕Ͱ͖ͳ͍ ➡ ϦΞϧλΠϜͰͷ࠷దԽʹΑΔࡉཻ͔͍Ͱͷ࠷దԽΛ࣮ݱ C. ํ๏ • online bidding algorithm frameworkΛఏҊ • Ωϟϯϖʔϯຖͷbidػೳύϥϝʔλͷߋ৽ํ๏ʢWaterlevel or Model-based ʣͱͯ͠ɺطଘͷϦιʔε ͷۙࣅΞϧΰϦζϜʹinspire͞Εͨํ๏ͱɺbidͷউͷΛϞσϧԽͯࣜ͠ʹΈࠐΜͩͷΛఏҊɻ
Formulation A. ऩӹͷఆٛ B. ೖࡳֹͷܾఆɺௐ ࠂओผ
ೖࡳֹௐͷ߲ ͜Ε͔Β͜ͷzЋzΛٻΊͯɺ࠷దͳzCJEQSJDFzΛਪఆ͠·͢
LR Formulation • ࠷దԽ ΩϟϯϖʔϯKͷJ൪ͷJNQνϟϯεʹJNQͰ͖͔ͨ൱͔ʢೋʣ WJKQJK RJKˡ $53 $1$ ΩϟϯϖʔϯKͷඪJNQʢ༧ࢉ੍Λ݉ͶΔʣ
εϥοΫ݅
• ࠷దԽͷର
➡ α,βΛٻΊΔ͜ͱ͕త ܭࢉճɺO(mn)Ͱͳ͘ɺO(m+n) ➡ શϢχϞδϡϥߦྻʢtotally unimodular matrix, TU ߦྻʣʹجͮ͘ ࢀߟʣhttp://ja.wikipedia.org/ ๚ऀͷ૿ՃͷܦࡁతʢJNQͷ࠷খՁ֨ͱʣ ༧ࢉͷ૿Ճͷܦࡁతʢ࠷খརӹͱʣ
Real-Time Bidding Algorithm • ٙࣅίʔυ HPBMBDIJFWFE Ќͷܭࢉ POMJOF"MHPSJUINͷద༻
Control-theoretic Bid Adjustment • waterlevel-base update (online algorithm) - ίετߟྀ͠ͳ͍
- PIɺPIDཧ JNQ FSSPS FSSPSʹͲΕ͚ͩૣ͘Ԡ͢Δ͔ͷ
1*%੍ޚཧ 1*%੍ޚͷجຊࣜɺภࠩFʹൺྫ͢Δग़ྗΛग़͢ൺྫಈ࡞ʢ1PQPSUJOBMBDUJPO1ಈ࡞ʣͱɺ ภࠩFͷੵʹൺྫ͢Δग़ྗΛग़͢ੵಈ࡞ʢ*OUFHSBMBDUJPO*ಈ࡞ʣͱɺ ภࠩFͷඍʹൺྫ͢Δग़ྗΛग़͢ඍಈ࡞ʢ%FSJWBUJWFBDUJPO%ಈ࡞ʣ͔ΒͳΔɻ ௨ৗɺ1ಈ࡞Λओମʹͯ͠ɺิॿతʹ*ಈ࡞ͱ%ಈ࡞Λ੍ޚରʹԠͯ͡దʹΈ߹ΘͤΔɻ ૢ࡞ྔ.7ɺͦΕͧΕͷͱͯ͠ɺ࣍ࣜͷ༷ʹද͞ΕΔɻ IUUQXXXOJDPNXIJUFQBQFSKB
Model-based Bid Adjustment • γεςϜ੍ޚཧʹجͮ͘Ξϓϩʔν(PI:online algorithm) - ίετɺೖࡳֹߟྀ FSSPSʹૣ͘ͲΕ͚ͩૣ͘Ԡ͢Δ͔ͷ ཧతͳೖࡳՁ֨
ཧతͳউʢHJʹ߹ΘͤΔͨΊʹඞཁͳউʣ ؍ଌ͞Εͨউ ೖࡳίετ .-&ͷύϥϝʔλɻ XJOͨ͠ೖࡳ X ͷ౷ܭྔ͔Βಋ͔ΕΔɻ
a Practical formulation • ίετ߲ͷಋೖʹΑΓߋʹҰൠԽͨ͠ओ
• ίετ߲ͷಋೖʹΑΓߋʹҰൠԽͨ͠ର JNQ(SPVQ QMBDFNFOU Jͷ֫ಘͰ͖ͦ͏ͳJNQ
Experiments • ࣮ݧ݁Ռͷ֓ཁ - αͷௐʹΑͬͯೖࡳͷ࠷దԽ͕ߦ͑Δ͔Ͳ͏͔ - ҟͳΔ࠷దԽख๏ͷಋೖʹΑΓͲͷఔύϑΥʔϚϯε͕ҟͳΔͷ͔ - αͷॳظ͕ͲͷఔӨڹ͢Δͷ͔ •
࣮ݧ݅ - ༻σʔλσΟεϓϨΠωοτϫʔΫͷσʔλ - ฏۉ120Mͷimp͕͋ΔαΠτͰ࣮ݧ - 4ͭͷCPCΩϟϯϖʔϯ͕ର • σʔλ • timestamp,placement,user,campaign,clicks,impressions • ॱʹt,i=(placement:user),j,cij(t),xij(t)
MJGU ʹ ࢪࡦΛ࣮ࢪ͠ͳ͍࣌ͷ݁Ռ ࢪࡦΛ࣮ࢪͨ࣌͠ͷ݁Ռ IUUQXXXBMCFSUDPKQUFDIOPMPHZDSNMJGUIUNM
- Experiments 1 • ؍ଌͱγϡϛϨʔγϣϯʹΑΔͷlift ➡ offlineͷΈΑΓonlineͰαΛௐͨ͠ํ͕͕ྑ͍
➡ model-based bid ͱ Waterlevel bidͷൺֱ - offlineͰͷαͷࢉग़1ͷσʔλ - αࢉग़ޙͷ4ؒͷσʔλΛൺֱ ➡ online algorithmoffline algorithmʹରͯ͠90ˋҎ্ͷ ➡ ҆ఆੑModel Bidder͕ྑ͍
- Experiments 2 • hourlyͷมಈʢ࣌ؒͷ҆ఆੑ֬ೝʣ ➡ Waterlevel Bidder࣌ؒతͳ҆ఆੑ͕ߴ͍ ➡ Model
Bidderෆ҆ఆ
- Experiment 3 • online algorithm(Waterlevel Bidder)ʹ͓͚ΔαͷॳظͷӨڹ ➡ ॳظͷมಈ΄ͱΜͲͳ͍ ͔͠͠ɺΩϟϯϖʔϯ༧ࢉͷ੍͕ݫ͚͠ΕӨڹ͕͋Δ͔…
• ༧ࢉ੍ʢݫʣ ➡ ༧ࢉ੍͕ݫ͚͠Εɺ ॳظͷมಈ͋Δɻ offline࠷దԽͨ͠αͷ͕ྑ͍ɻ - Experiments 4
Conclusion • ݁ - γϯϓϧ͕ͩཧతഎܠͷ͋Δonline algorithmΛఏҊ - PIDཧͷԠ༻Մೳੑ - ଞͷछྨͷϞσϧߟྀ͢Εɺߋʹվྑ͕ग़དྷΔͷͰͳ͍͔