Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これは分散KVS? NoSQL? NewSQL? 謎の HarperDBにせまる
Search
jyoshise
December 13, 2022
Technology
0
510
これは分散KVS? NoSQL? NewSQL? 謎の HarperDBにせまる
Cloud Native Database Meetup #5 のLT資料です。
jyoshise
December 13, 2022
Tweet
Share
More Decks by jyoshise
See All by jyoshise
Nutanix Kubernetes PlatformでLLMを動かす話
jyoshise
0
370
CNDT2023_Nutanix_jyoshise
jyoshise
0
390
クラウドネイティブインフラおじさんがNutanixに入社することになったので以下略
jyoshise
0
1k
全てがクラウドネイティブで良いのか。その謎を明らかにすべく我々はエンプラの奥地に向かった
jyoshise
6
5.3k
Kubeadmによるクラスタアップグレード・その光と闇
jyoshise
3
4.6k
Kubernetes Meetup Tokyo #26 / Recap: Kubecon Keynote by Walmart
jyoshise
6
3.2k
Kubernetes Meetup Tokyo #20 / KubeCon Recap: Tekton
jyoshise
0
140
KubeCon Recap: Keynote-Airbnb
jyoshise
1
2k
エンタープライズコンテナプラットフォーム、どれがええねん
jyoshise
19
4.1k
Other Decks in Technology
See All in Technology
LLMの開発と社会実装の今と未来 / AI Builders' Community (ABC) vol.2
pfn
PRO
1
140
Google Cloud Next 2025 Recap アプリケーション開発を加速する機能アップデート / Application development-related features of Google Cloud
ryokotmng
0
180
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
730
計測による継続的なCI/CDの改善
sansantech
PRO
1
440
Ninno LT
kawaguti
PRO
1
120
使えるデータ基盤を作る技術選定の秘訣 / selecting-the-right-data-technology
pei0804
6
1.2k
Ruby on Rails の楽しみ方
morihirok
1
220
本当に必要なのは「QAという技術」だった!試行錯誤から生まれた、品質とデリバリーの両取りアプローチ / Turns Out, "QA as a Discipline" Was the Key!
ar_tama
9
4.4k
Azure × MCP 入門
ry0y4n
8
1.7k
正式リリースされた Semantic Kernel の Agent Framework 全部紹介!
okazuki
1
1.1k
Part1 GitHubってなんだろう?その2
tomokusaba
2
750
さくらのクラウド開発の裏側
metakoma
PRO
3
1.6k
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.3k
KATA
mclloyd
29
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
A better future with KSS
kneath
239
17k
Become a Pro
speakerdeck
PRO
28
5.3k
Typedesign – Prime Four
hannesfritz
41
2.6k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
The Pragmatic Product Professional
lauravandoore
33
6.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
700
Transcript
@jyoshise これは分散KVS? NOSQL? NEWSQL? 謎の HARPERDBにせまる
None
3
4 • LMDB (Lightning Memory-Mapped Database) とは: • もともとはOpenLDAPプロジェクトのために作られたOSS •
CloudflareがDNS用のデータストアとして使っていたりとか • Memory-mapped fileを使用 • 軽量 • 高速 • ACID準拠 • 読み出しと書き込みに高度に最適化された追記型B+tree構造 • トランザクションをサポート • 書き込みロック処理→デッドロックは発生しない • Full MVCC→ReaderとWriterは競合しない • Dup-sorted keys UNDERLYING STORAGE MECHANISM OF HARPERDB: LMDB
5 • JSONやSQLでデータを取り込み、1つの データスキーマに格納できるようにしたい。 • マルチモデルデータベースでよくある、1つ のデータベース内でモデル間でデータが重複 してしまうという問題を解決する • Same
data set • Common services/core operation • No data duplication for different models • SQL, NoSQL, CSV, etc… all talking to HarperDB core and same data set OPERATIONAL MODEL
6
7 • テーブルを作成するときはハッシュAttribute名(Primary key)を定義するだけでよい • 各テーブルはディスク上に1つのデータファイル(.mdb)であり、すべてのインデックス はデータファイル内の「サブデータベース」 • データ書き込み(挿入、更新、削除)は「マイクロバッチ処理」とし、トランザクション の一括実行を可能にすることで、より高いパフォーマンスを実現
STORAGE HIERARCHY
8 • コア数 • インストールされたインスタンスで利用可能なコア数に合わせてスケール可能 –Raspberry Pi から大規模ベアメタルサーバーまで –大規模環境ではHarperDBを並列プロセスで実行 •
プロセス数=利用可能なコアの数 • ディスク • ストレージは無制限→テーブルはインスタンスのストレージの利用可能な容量まで成長 SCALING WITH HARDWARE
9 • Read/Write Optimized • 1ノードあたり毎秒20Kの書き込みが可能 • 読み込みと書き込みが独立したノンブロッキングのグローバルレプリケーション(MVCC)を110msで実行できる • High
Throughput • HarperDB 1ノードで120Kリクエスト/秒の処理能力 • Storage Engine • ACID準拠 • Attributesはuniversally indexed by default →効率的な格納と検索が可能 PERFORMANCE & BENCHMARKS
10
11
12
13 • 各ノードはトランザクションとストレージをACIDに他のノードから独立して処理 • 各ノードは、他のノードに接続し、任意のテーブルに対してトランザクションを送受信で きる • スキーマメタデータとトランザクションを、定義されたトポロジーに基づき決定論的にリ アルタイムで送信 •
すべてのノードがネットワークやサーバーの停止からキャッチアップでき、”dead on the floor”トランザクションは発生しない • 一貫性を保つためにタイムスタンプを利用→更新のシナリオでは最新のトランザクション を優先(古い更新があった場合、それは破棄される) • 再接続シナリオでは、HarperDBノードは自動的にオフラインだった時間分のキャッチアッ プペイロードを要求し、送信 HARPERDB: DISTRIBUTED COMPUTE & STORAGE
14
15 HarperDBは • むちゃくちゃ速い(らしい) • DB設計をほとんど考えなくてよいので楽 • CSVなりJSONなりでデータをぶっこめばインデックスしてくれて、あとはSQLで 読み書きできる •
Geo distributionはConsistencyの点でまだ開発途上のようだが、読み書き性能を優先す る用途には使えそう • クラウドのDBaaSもあるのでとっつきやすい • https://harperdb.io/ • 小さいインスタンスなら無料でお試しできます • オンプレにデプロイしてクラウドで管理もできる まとめ