Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AOJ 0112 A Milk Shop 解説
Search
kagamiz
March 28, 2013
Programming
0
450
AOJ 0112 A Milk Shop 解説
OkNCT-ICT 2013 春合宿 Day 4 (らしい) に解説したもの.
kagamiz
March 28, 2013
Tweet
Share
More Decks by kagamiz
See All by kagamiz
KCS v2. の開発
kagamiz
0
240
internship final presentation
kagamiz
0
1.2k
internship-middle term presentation
kagamiz
0
1k
すうがくのまほう
kagamiz
0
330
ご当地料理の紹介
kagamiz
0
380
オンラインジャッジシステムの実装
kagamiz
0
1.2k
AOJ 0022 Maximum Sum Sequence 解説
kagamiz
1
1.5k
AOJ 0557 A First Grader 解説
kagamiz
0
970
JOI2013 本選1 Illumination 解説
kagamiz
0
330
Other Decks in Programming
See All in Programming
remix + cloudflare workers (DO) docker上でいい感じに開発する
yoshidatomoaki
0
120
マルチアカウント環境での、そこまでがんばらない RI/SP 運用設計
wa6sn
0
580
goにおける コネクションプールの仕組み を軽く掘って見た
aronokuyama
0
140
Go1.24 go vetとtestsアナライザ
kuro_kurorrr
2
470
아직도 SOLID 를 '글'로만 알고 계신가요?
sh1mj1
0
360
RailsでCQRS/ESをやってみたきづき
suzukimar
2
1.5k
SLI/SLOの設定を進めるその前に アラート品質の改善に取り組んだ話
tanden
2
730
RCPと宣言型ポリシーについてのお話し
kokitamura
2
150
ニックトレイン登壇資料
ryotakurokawa
0
140
PHPでお金を扱う時、終わりのない 謎の1円調査の旅にでなくて済む方法
nakka
3
1.2k
なぜselectはselectではないのか
taiyow
2
310
Go1.24で testing.B.Loopが爆誕
kuro_kurorrr
0
160
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Music & Morning Musume
bryan
46
6.4k
Unsuck your backbone
ammeep
670
57k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Pragmatic Product Professional
lauravandoore
33
6.5k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Faster Mobile Websites
deanohume
306
31k
Building Your Own Lightsaber
phodgson
104
6.3k
Navigating Team Friction
lara
184
15k
Transcript
AOJ 0112 A Milk Shop 解説 @kagamiz
問題の概要 • n 人のお客さんがいます. • i 番目の人がミルクを入れるのにはai 分の時間がかかりま す. •
1 度に1 人の人がミルクを入れられるとき, 待ち時間の合計 を最小化してください.
問題文の復習 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0 分 客2
6 分 2 分 客3 4 分 2 分 + 6 分 客4 3 分 2 分 + 6 分 + 4 分 客5 9 分 2 分 + 6 分 + 4 分 + 3 分 合計 37 分
問題文の復習 • 2 番目の人と3 番目の人を入れ替えてみる 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2
分 0 分 客2 6 分 2 分 客3 3 分 2 分 + 6 分 客4 4 分 2 分 + 6 分 + 3 分 客5 9 分 2 分 + 6 分 + 3 分 + 4 分 合計 35 分
問題文の復習 • 昇順にすると爆速になりそう 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0
分 客2 3 分 2 分 客3 4 分 2 分 + 3 分 客4 6 分 2 分 + 3 分 + 4 分 客5 9 分 2 分 + 3 分 + 4 分 + 6 分 合計 31 分
( ^o^) 昇順にすると爆速になりそう
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう)
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer • ▂▅▇█▓▒░(’ω’) █▇▅▂ ░▒▓ うわあああああああ
( ^o^) 昇順にすると爆速になりそう • ( ⊖ ) ˘ ˘ 。o(まてよ,
なんでそれでいいんだろう) • |とりあえずSubmit| ┗(☋` )┓三 • ( ) ◠‿◠ ☛Wrong Answer • ▂▅▇█▓▒░(’ω’) █▇▅▂ ░▒▓ うわあああああああ • 最悪のケースを考えてみよう
最悪のケース • 10000 人のお客さんがそれぞれ60 分ずつ待つときが最悪 の待ち時間になる. • その時にかかる待ち時間の合計は, n 番目の人は(n
– 1) * 60 分待たないといけないので, Σ[i = 1, 10000] (i – 1) * 60 = 2999700000 分 となる. • しかしint 型で表せる数の最大値は2147483647 なので, int 型で総和を求めるとWrong Answer となる. => 直すとAC
やっぱり昇順でいれるのが最適? • “しかしint 型で表せる数の最大値は2147483647 なので, int 型で総和を求めるとWrong Answer となる.=>直すと AC”
• こういう風に, 貪欲的に「その場での最善」を選択してい くことを繰り返すアルゴリズムを貪欲法という. • ここでは, なぜ貪欲法でうまくいくかを簡単に証明.
問題文の復習[再掲] • 昇順にすると爆速になりそう 客の番号 ミルクを入れる時間 かかる待ち時間 客1 2 分 0
分 客2 3 分 2 分 客3 4 分 2 分 + 3 分 客4 6 分 2 分 + 3 分 + 4 分 客5 9 分 2 分 + 3 分 + 4 分 + 6 分 合計 31 分
問題の言い換え • i 番目の人は, 待ち時間に(n – i) 回作用する. • つまり,
n 次元ベクトル a = (a1, a2, …, an), b = (n – 1, n – 2, …, 1, 0) としたとき, それぞれの成分を入れ替えて内積a ・ b を最小化する問題 となる.
問題の言い換え • a の各成分を昇順に入れ替えたベクトルをa', b は成分が 降順にならんだベクトルとすると, 次の並べ替え不等式が 成立する. a'・
b ≦ a ・ b (≦ a'' ・ b) • ここで, a'' は a の各成分を降順に並び替えたベクトル.
証明の概略 • a とb の各成分の個数が2 個だとする. • このとき, a1 ≦
a2, b1 ≦ b2 とすると • a1 b1 + a2b2 – (a1b2 + a2b1) = (a1 – a2)(b1 – b2)≧0 ∴a1b1 + a2b2 ≧ a1b2 + a2b1 • 各成分がn 個ある時も, ベクトルの2 つの成分に注目して同じ事 を行えば良い.