Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Kaito Minatoya
December 23, 2025
Programming
0
400
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
Kaito Minatoya
December 23, 2025
Tweet
Share
More Decks by Kaito Minatoya
See All by Kaito Minatoya
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
2.4k
組織と文化から設計するエンジニア採用ストラテジー
kamina_zzz
0
1.1k
Other Decks in Programming
See All in Programming
AI時代の認知負荷との向き合い方
optfit
0
130
Data-Centric Kaggle
isax1015
2
750
CSC307 Lecture 01
javiergs
PRO
0
680
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
160
Oxlintはいいぞ
yug1224
5
1.3k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
440
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
150
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
170
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
100
Implementation Patterns
denyspoltorak
0
280
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
Featured
See All Featured
The Curious Case for Waylosing
cassininazir
0
230
Being A Developer After 40
akosma
91
590k
What does AI have to do with Human Rights?
axbom
PRO
0
2k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
230
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Music & Morning Musume
bryan
47
7.1k
Un-Boring Meetings
codingconduct
0
200
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
Transcript
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜 2025 / 12 / 23 Ubie株式会社 Software
Engineer / Tech Lead 湊谷 海斗
2 @me 2 Minatoya Kaito 湊谷 海斗 @kamina_zzz Ubie, inc.
Software Engineer / Tech Lead Music 🎸, Camera 📷, Fishing 🎣, Poker ♠, Game 🎮, Drinking 🍻, Camping ⛺
3 3 Ubie について
4 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
5 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249 やることが ……多い!
6 怠惰の極地 ・ストリームアラインドチームの開発者はフルサイクルエンジニアリングを実践している 具体的には… 1. PBI(プロダクトバックログアイテム)の作成 2. 実装 3. テスト
4. デプロイ 5. システム・事業メトリクスの分析 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249 全部 AI に丸投げしたい!
7 怠惰の極地 目指したところ: 「全部AI Agentにやらせて、自分は『デプロイしてヨシ!』って言うだけの係になりたい」 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
8 目指す体験 1. 企画: 私が「こういう機能があったら良さそう」とチャットにふわっと投げる。 2. PBI化: AIがそれを拾い、仕様に落とし込んでPBIを作成する。 3. 実装:
AI Agentがコードを書き、PRを作成する。 4. 検証: PR作成と同時にPreview環境へデプロイ。AIがオンデマンドのE2Eテストコードを書いて実行す る。 5. 承認: ここで初めて人間が登場。「いいじゃん」と承認ボタンを押す。 6. 分析: デプロイ後、AIがログやメトリクスを監視。「数値が悪化したのでロールバックしました」や「A/Bテス トでB案が勝ったので本採用します」といった判断まで行う。 7. 次の企画: 分析から得た示唆や他の情報から「次に行うべき修正の企画出し」が提示される。
9 目指す体験 1. 企画: 私が「こういう機能があったら良さそう」とチャットにふわっと投げる。 2. PBI化: AIがそれを拾い、仕様に落とし込んでPBIを作成する。 3. 実装:
AI Agentがコードを書き、PRを作成する。 4. 検証: PR作成と同時にPreview環境へデプロイ。AIがオンデマンドのE2Eテストコードを書いて実行す る。 5. 承認: ここで初めて人間が登場。「いいじゃん」と承認ボタンを押す。 6. 分析: デプロイ後、AIがログやメトリクスを監視。「数値が悪化したのでロールバックしました」や「A/Bテス トでB案が勝ったので本採用します」といった判断まで行う。 7. 次の企画: 分析から得た示唆や他の情報から「次に行うべき修正の企画出し」が提示される。 既にできているところもある
10 現在地: やりたいこと →デプロイまで
11 現在地: やりたいこと →デプロイまで
12 現在地: やりたいこと →デプロイまで
13 現在地: やりたいこと →デプロイまで
14 現在地: やりたいこと →デプロイまで
15 現在地: やりたいこと →デプロイまで
16 怠惰の極地 目指したところ: 「全部AI Agentにやらせて、自分は『デプロイしてヨシ!』って言うだけの係になりたい」 https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
17 技術スタック ・Slack, JIRA, GitHub, Claude Code ・Ubie では体感として Claude
Code が良さそう ・claude-code-base-action をもとに自作した GitHub actions で Claude Code を動かしている ・理論上 local の Claude Code と同じ性能が得られる
18 Why チケット駆動? ・チケット=「AIへの構造化されたプロンプト」 ・トレーサビリティ ・最初から AI が 100% 完璧に仕事を完遂はできない
・書き換えながら中間表現として共有メモリとして機能する ・Engineer以外も含む人間でも AI でも修正しやすい ・ステータス管理 ・メトリクス確認中→十分なサンプルサイズが集まってから分析する必要
19 今後の展望 ・merge & deploy の自動化 ・分析からレポーティング、次の企画へと完全自動化 ・エラーやシステムメトリクスの監視、自動復旧 ・より大きな機能開発、リファクタリング、リアーキテクチャなどなど
20 ご静聴ありがとうございました! We Are Hiring! 💪 https://recruit.ubie.life/