Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
computer-vision-survey
Search
KARAKURI Inc.
May 07, 2021
Research
3
400
computer-vision-survey
Computer Visionの近年の動向のサーベイ
KARAKURI Inc.
May 07, 2021
Tweet
Share
More Decks by KARAKURI Inc.
See All by KARAKURI Inc.
BERT-to-GPT Catch Up Survey
karakurist
2
2.2k
boke-generator
karakurist
2
410
user-behaviour-vol1
karakurist
3
370
user-behaviour-vol2
karakurist
4
780
nlp-survey
karakurist
24
3.6k
survey-imbalanced-learning
karakurist
7
1.9k
Other Decks in Research
See All in Research
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
120
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
330
Whoisの闇
hirachan
3
140
大規模言語モデルのバイアス
yukinobaba
PRO
4
700
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
230
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
580
ミニ四駆AI用制御装置の事例紹介
aks3g
0
160
TransformerによるBEV Perception
hf149
1
440
さんかくのテスト.pdf
sankaku0724
0
350
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
Kaggle役立ちアイテム紹介(入門編)
k951286
14
4.6k
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
460
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
88
5.7k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
The Language of Interfaces
destraynor
154
24k
Embracing the Ebb and Flow
colly
84
4.5k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Become a Pro
speakerdeck
PRO
25
5k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Designing the Hi-DPI Web
ddemaree
280
34k
Transcript
Computer visionͷۙͷಈͷαʔϕΠ ߴࢤ 1
αʔϕΠͷత 2 Computer vision (CV) ݚڀͷۙͷಈΛΓ͍ͨʂ • ֶशख๏ΛΓ͍ͨ • ωοτϫʔΫͷมભΛΓ͍ͨ
ˠ χϡʔϥϧҎ߱ͷ$7ͷมભ͜Ε·ͰͷಈΛ͘ઙ͘հ
ࠓճ͞ͳ͍͜ͱ 3 • ը૾/ಈըੜҰൠ • ఢରతֶश • ڭࢣ͋Γֶश • ࣗݾڭࢣ͋Γֶश
• ݹయతͳίϯϐϡʔλʔϏδϣϯ ͳͲͳͲɽɽ
ࠓͷྲྀΕ 4 ̍ɽλεΫඇಛԽϞσϧʢը૾ೝࣝͷϞσϧʣͷಈ ̎ɽ֤λεΫʹಛԽͨ͠Ϟσϧͷಈ ̏ɽ·ͱΊ
ͦͷલʹ 5 ɾਆࢿྉ܈ ɾͪ͜ΒͷࢿྉΛେ͍ʹࢀߟʹ͠·ͨ͠ http://xpaperchallenge.org/cv/ https://github.com/hirokatsukataoka16/cvpaper.challenge-summary
̍ɽλεΫඇಛԽϞσϧͷಈ 6
ΞʔΩςΫνϟɾֶश๏ʢը૾ೝࣝʣ 7
࣌ܥྻ 8
AlexNet [Krizhevsky+ NeurIPS 2012] 9 • ը૾ೝࣝίϯϖͰ͋ΔILSVRC2012Ͱѹউ • ਂΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN)ͷ࣌ͷນ։͚
࣌ܥྻ 10
ResNet [He+ CVPR 2016] 11 • ILSVRC2015༏উϞσϧ • Skip connectionͷಋೖͰ152ͷਂCNNͷֶश͕Մೳʹ
• Ҏ߱ͷը૾ೝࣝͷϞσϧجຊతʹResNetͷվྑ
࣌ܥྻ 12
ResNext [Xie+ CVPR 2017] 13 • ೖྗΛذͤͯ͞ෳͷωοτϫʔΫͰॲཧ͠ɼͦͷ݁ՌΛ͠߹ΘͤΔ
WideResNet [Zagoruyko+ 2017] 14 • ਂ͞Λઙͯ͘͠෯Λͨ͘͠ResNet
࣌ܥྻ 15
PyramidNet [Han+ CVPR 2017] 16 • DownsamplingΛ༻͍Δࡍͷٸܹͳ෯૿ՃʹΑΔਫ਼ྼԽΛ͙ͨΊɼ શମͰগͣͭ͠ͷ෯Λେ͖͘͢Δ
SENet [Hu+ CVPR 2018] 17 • ͷೖྗΛѹॖͨ͠ͷΛχϡʔϥϧωοτͰม͠ɼ͜ΕΛ༻͍ͯ ೖྗΛॏΈ͚Δ
DenseNet [Huang+ CVPR 2017 (best paper)] 18 • ֤ͦͷલͷͯ͢ͷͱskip connectionͰͭͳ͕Δ
MobileNet v1-3 [Howard+ 2017, Sandler+ 2018, Howard+ 2019] 19 •
ۭؒํͷΈͷΈࠐΉdepthwise convolutionͱ νϟωϧํͷΈΈࠐΉpointwise convolutionͰΈࠐΈͷܰྔԽ
PNASNet [Liu+ 2017] 20 • Neural architecture search (NAS)ͷ݁ՌಘΒΕͨϞσϧ •
CNNશମͰͳ͘ෳͷCNNϒϩοΫ͔ΒͳΔʮηϧʯΛ୳ࡧ • ୯७ͳͷ͔Βঃʑʹෳࡶͳͷͱ୳ࡧΛߦ͏
࣌ܥྻ 21
EfficientNet [Tan&Le ICML 2019] 22 • ͜Ε·Ͱͷ༷ʑͳϞσϧͷεέʔϧΞοϓख๏ͷશ෦ͷͤ
Noisy Student Training [Xie+ CVPR 2020] 23 • ֶशࡁΈੜెΛڭࢣͱͯ͠ɼॱ࣍େ͖ͳੜెΛֶश͢Δࣗݾڭࢣ͋Γֶश •
ੜెʹϊΠζΛՃ͢Δ͜ͱͰਫ਼ʹՃ͑ͯؤ݈ੑ্
BiT [Xie+ Kolesnikov 2019] 24 • 10ԯύϥϝʔλͷେنϞσϧͰࣄલֶश • సҠઌͷσʔλ͕গͳͯ͘͏·͍͘͘
࣌ܥྻ 25
Vision Transformer (ViT) [Dosovitskiy+ ICLR 2021] 26 • TransformerͰը૾ೝࣝͷSOTA
̎ɽ֤λεΫʹಛԽͨ͠Ϟσϧͷಈ 27
ମݕग़ 28
Ұൠମݕग़ 29 [https://pjreddie.com/media/files/papers/YOLOv3.pdf] • ը૾தͷମͷΫϥεͱҐஔΛͯΔ
࣌ܥྻ 30 [Zou+ 2020 Object Detection in 20 Years: A
Survey]
R-CNN [Girshick+ CVPR 2014] 31 • ΦϒδΣΫτ͕ଘࡏ͢ΔީิྖҬΛΓग़͠CNNͰಛநग़
Fast R-CNN [Girshick ICCV 2015] 32 • ·ͣը૾ͷಛϚοϓΛ࡞͠ɼީิྖҬ (ROI) ΛಛϚοϓ্ʹࣹӨ
• ΦϒδΣΫτͷྨͱόϯσΟϯάϘοΫεͷճؼNNͰߦ͏ • ֤ީิྖҬ͝ͱͰͳ֤͘ը૾͝ͱʹΈࠐΊΑ͘ͳΓɼߴԽ
Faster R-CNN [Ren+ NeurIPS 2015] 33 • ީิྖҬ (ROI) ͷఏҊ·ͰؚΊͯend-to-endʹֶश
YOLO v1-4 [Redmon+ CVPR 2016, CVPR 2017, 2018, Bochkovskiy+ 2020]
34 • ମݕग़ͱମࣝผΛҰؾ௨؏ʹߦ͏one-stageͷख๏ • Ϋϥε֬ɼ֬৴ɼόϯσΟϯάϘοΫεͷใΛग़ྗ
SSD [Liu+ ECCV 2016] 35 • YOLOಉ༷one-stageͷख๏ • ༧Ίෳ༻ҙͨ͠ͷόϯσΟϯάϘοΫεຖʹਪ •
֤ͷಛϚοϓ͔Βಛநग़͢Δ͜ͱͰ༷ʑͳεέʔϧͰମݕग़
RetinaNet [Lin+ ICCV 2017] 36 • ForegroundͱbackgroundͷΫϥεෆۉߧ͕one-stage๏͕ੑೳͰtwo- stage๏ʹྼΔཧ༝Ͱ͋Δ͜ͱΛࢦఠ • ΫϥεෆۉߧʹରԠ͢ΔͷͨΊͷFocal
LossͷఏҊʹΑΓɼ1-stageͳ ͕Βߴ͍ਫ਼ͷମೝࣝΛ࣮ݱ • ϕʔεͷΞʔΩςΫνϟʔʹޙड़ͷFeature Pyramid NetworkΛ༻
FCOS [Tian+ ICCV 2019] 37 • RetinaNetͷվྑ൛ • ମͷத৺ͷਪఆΛՃͰߦ͍ɼΞϯΧʔϑϦʔͳମݕग़Λ࣮ݱ
Bridging the Gap Between Anchor-based and Anchor-free Detection [Zhang+ 2019]
38 • Anchor-basedͱancho-freeͷҧ͍ɼෛྫͱਖ਼ྫͷબͷҧ͍
ηάϝϯςʔγϣϯ 39
ηάϝϯςʔγϣϯ 40 [https://arxiv.org/pdf/1706.05587.pdf] • ֤ϐΫηϧຖʹମͷΫϥε/എܠͷࣝผΛ͢Δ
࣌ܥྻ 41 [Minaee+ 2020 Image Segmentation Using Deep Learning: A
Survey]
FCN [Long+ CVPR 2015] 42 • CNNͷग़ྗΈࠐΈʹ͢Δ͜ͱͰɼώʔτϚοϓΛग़ྗ
SegNet [Badrinarayanan+ 2015] 43 • શͯΈࠐΈͷΤϯίʔμͱσίʔμ͔ΒͳΔωοτϫʔΫ • σίʔμΛ༻͍Δ͜ͱͰDeconvolutionஈ֊తʹߦ͑Δ
U-Net [Ronneberger+ MICCAI 2015] 44 • ΤϯίʔμͷಛදݱΛskip connectionͰσίʔμʹίϐʔͯ͢͠
DeepLab v1-3 [Chen+ TPAMI 2017] 45 • Down samplingΛͳ͘͠ɼdilated convolutionͱઢܗิؒΛΈ߹Θ
ͤΔ͜ͱͰߴղ૾ͳηάϝϯςʔγϣϯΛ࣮ݱ [Cui+ Remote Sens.2019]
FastFCN [Wu+ 2019] 46 • Joint Pyramid Upsampling (JPU) ͷಋೖͰdilated
convolutionʹൺͯ ܭࢉίετΛେ෯ʹݮ
Mask R-CNN [He+ ICCV 2017] 47 • Bounding boxͷ༧ଌʹՃ͑ͯΫϥεͷϚεΫ༧ଌ͢ΔFaster R-CNN
• RoIPoolʹΘΔRoIAlignͷಋೖͰྖҬׂͳͲՄೳʹ
PSPNet [Zhao+ CVPR 2017] 48 • ༷ʑͳεέʔϧͷϓʔϦϯάʹΑΓϚϧνεέʔϧͳಛදݱΛ֫ಘ
FPN [Lin+ CVPR 2017] 49 • CNNͷ֊ੑΛར༻֤͠֊Ͱ༧ଌͯ͠ϚϧνεέʔϧͳಛΛ֫ಘ • ग़ྗʹ͍ۙಛΛೖྗʹ͍ۙଆʹ͑Δ͜ͱͰɼઙ͍Ͱ༗ ҙຯͳಛநग़͕Մೳ
Visual Question Answering 50
Visual Question Answering 51 [https://arxiv.org/pdf/1505.00468.pdf] • ը૾ʹର͢Δ࣭จͷԠ
࣌ܥྻ 52 [Srivastava+ 2020 Visual Question Answering using Deep Learning:
A Survey and Performance Analysis]
σʔληοτ 53 [Srivastava+ 2020 Visual Question Answering using Deep Learning:
A Survey and Performance Analysis]
VQA [Agrawal+ ICCV 2015] 54 • LSTMͰ࣭จΛɼCNNͰը૾ΛຒΊࠐΜͰಛදݱΛ࡞
Stacked Attention Networks [Yang+ CVPR 2016] 55 • CNNಛྔʹଟஈ֊ͷattentionΛ͔͚ͯஈ֊తʹରΛߜΓࠐΉ
Embodied Question Answering [Das+ CVPR 2018] 56 • ࣭͕༩͑ΒΕΔͱɼΤʔδΣϯτγϛϡϨʔγϣϯۭؒͰߦಈ Λͱͬͯ͑Λݟ͚ͭΔ
CLEVR [Johnson+ CVPR 2017] 57 • VQAͷͨΊͷσʔληοτ • ཧతͳਪ͕ඞཁͱ͞ΕΔ
ಈըೝࣝ 58
࣌ܥྻ 59 [Zhu+ 2020 A Comprehensive Study of Deep Video
Action Recognition]
σʔληοτ 60 [Zhu+ 2020 A Comprehensive Study of Deep Video
Action Recognition]
ྨ 61 [Zhu+ 2020 A Comprehensive Study of Deep Video
Action Recognition]
3D CNN (C3D) [Tran+ ICCV 2015] 62 • 3࣍ݩΈࠐΈΛ༻͍Δ͜ͱͰ࣌ؒํͷಛදݱ
(2+1)D CNN [Tran+ CVPR 2018] 63 • ҰͭͷͰҰؾʹ࣌ؒํ·ͰΈࠐΉͷͰͳ͘ɼ·ۭͣؒํʹ ΈࠐΜͩ͋ͱͰ࣌ؒํʹΈࠐΉ
I3D [Carreira&Zisserman CVPR 2017] 64 • 3D ConvΛੵΈॏͶͨωοτϫʔΫ
Non-local [Wang+ CVPR 2018] 65 • AttentionʹΑΔॏΈ͚ͰɼେҬతͳใΛՃຯ • ͋ΔҐஔͷΛͦͷଞͷͯ͢ͷҐஔͷಛͷॏΈ͖Ͱදݱ
SlowFast Networks [Feichtenhofer+ ICCV 2019] 66 • ϑϨʔϜϨʔτͰۭؒಛΛɼߴϑϨʔϜϨʔτͰ࣌ؒಛΛଊ͑Δ
࢟ਪఆ 67
ྨ 68 [Chen+ 2020 Monocular Human Pose Estimation: A Survey
of Deep Learning-based Methods] [Zheng+ 2020 Deep Learning-Based Human Pose Estimation: A Survey]
Convolutional Pose Machines [Wei+ CVPR 2016] 69 • ଟஈ֊ͷ༧ଌʹΑΓɼ֤ମ෦Ґͷਪఆਫ਼ΛߴΊΔ
Part Affinity Fields [Cao+ CVPR 2017] 70 • ࢛ࢶͷҐஔͱ͖ΛຒΊࠐΉϕΫτϧΛ༻͍ͨ࢟ਪఆ
HRNet [Sun+ CVPR 2019] 71 • Sub-networkΛՃ͢Δ͜ͱͰશମͷղ૾Λམͱͣ࢟͞ਪఆ͕Մೳ
3D 72
ྨ 73 [Ahmed+ 2020 A survey on Deep Learning Advances
on Different 3D Data Representations]
3D ܈ 74
࣌ܥྻ 75 [Guo+ 2020 Deep Learning for 3D Point Clouds:
A Survey]
ྨ 76 [Guo+ 2020 Deep Learning for 3D Point Clouds:
A Survey]
σʔληοτ 77 [Guo+ 2020 Deep Learning for 3D Point Clouds:
A Survey]
PointNet [Qi+ CVPR 2017] 78 • ܈σʔλΛೖྗͱ͠ɼճసॱংͷมͳͲͷૢ࡞ʹରͯ͠ෆมͳಛ Λग़ྗ͢ΔωοτϫʔΫ
PointNet++ [Qi+ NeurIPS 2017] 79 • PointNetہॴతͳใΛ͏·͘र͍͑ͯͳ͔͕ͬͨɼPointNetΛ֊త ʹద༻͢Δ͜ͱͰ͜ΕʹରԠ
Dynamic Graph CNN [ACMTG+ 2019] 80 • ֤ͱͦͷۙͷؔΛදݱͨ͠ΤοδಛΛͭ͘ΔΈࠐΈͷఏҊ
VoxelNet [Zhou+ CVPR 2018] 81 • ܈σʔλΛvoxelʹΓ͚ɼ֤ϘΫηϧ୯ҐͰಛදݱͷຒΊࠐΈ • 3D܈ମೝࣝͷਫ਼্
3D ϝογϡ 82
Heat Diffusion Equation 83 • ۂ໘ʢϦʔϚϯଟ༷ମʣ্Ͱͷ֦ࢄΛߟ͑Δ [Bronstein+ 2016 Geometric deep
learning: going beyond Euclidean data]
Geodesic CNN [Masci+ ICCV 2015] 84 • ඇϢʔΫϦουଟ༷ମʹରԠՄೳͳCNNͷఏҊ • ֤Ͱۃ࠲ඪΛߟ͑Δ
Anisotropic CNN [Boscaini+ NeurIPS 2016] 85 • ඇํͳΧʔωϧΛߟ͑Δ͜ͱͰہॴతͳදݱΛΑΓΑ͘நग़ [Bronstein+ 2016
Geometric deep learning: going beyond Euclidean data]
Monet [Monti+ CVPR 2017] 86 • ͜Ε·ͰͷඇϢʔΫϦουCNNͷҰൠԽ • ࠲ඪͷҰൠԽ •
ݻఆͷΧʔωϧͰͳֶ͘शՄೳͳΧʔωϧΛ͍ɼΧʔωϧͷҰൠԽ
3D ඍՄೳϨϯμϥʔ 87
ඍՄೳϨϯμϥʔ 88 % % ϨϯμϦϯά
Perspective Transformer Nets [Yan+ NeurIPS 2016] 89 • ϘΫηϧͷඍՄೳϨϯμϥʔ
Neural 3D Mesh Renderer [Monti+ CVPR 2017] 90 • ߴਫ਼ͳϝογϡͷඍՄೳϨϯμϥʔ
• ϥελϥΠζ෦ΛඍՄೳʹͨ͜͠ͱͰٯՄೳʹ [https://www.slideshare.net/100001653434308/23d-neural-3d-mesh-renderer-cvpr-2018]
Transformers/Attention 91
࣌ܥྻ 92 [Han+ 2021 A Survey on Visual Transformer]
ྨ 93 [Han+ 2021 A Survey on Visual Transformer] [Khan+
2021 Transformers in Vision: A Survey]
DETR [Carion+ ECCV 2020] 94 • CNNͰը૾ಛΛநग़ͨ͠ͷͪɼtransformerͰମೝࣝ
iGPT [Chen+ ICML 2020] 95 • ը૾ಛΛGPT-2Ͱڭࢣͳֶ͠श
Vision Transformer (ViT) [Dosovitskiy+ ICLR 2021] 96 • ७ਮͳTransformerͰը૾ೝࣝͷSOTA ࠶ܝ
IPT [Chen+ 2020] 97 • ෳͷλεΫΛಉ࣌ʹߦ͏transformer
98 [https://twitter.com/jaguring1/status/1377710003377725441]
99 [https://www.slideshare.net/cvpaperchallenge/transformer-247407256]
ɽ·ͱΊ 100
·ͱΊ 101 • ϞσϧͷൃలResNetΛϕʔεʹɼෳࡶԽɾେنԽɾޮԽ • Vision transformer͕ଓʑొ • جຊతͳcomputer visionͷλεΫʹಛԽͨ͠ϞσϧϕϯνϚʔΫ͕
ݻ·͍ͬͯΔ༷ࢠ • 2D → 3DͷྲྀΕ • ϚϧνεέʔϧͳใͷΈࠐΈ͕Α͋͘Δҹ • ࡉ͔͍ςΫχοΫ͕ॏཁͳҹ [https://www.slideshare.net/cvpaperchallenge/cvpr-2020-237139930]
ࢀߟࢿྉͳͲ 102
ࢀߟࢿྉ 103 • [cvpaper.challenge-summary](https://github.com/hirokatsukataoka16/cvpaper.challenge-summary) • [CVPR 2016 ใ](https://www.slideshare.net/HirokatsuKataoka/cvpr-2016) • [CVPR
2017 ใ](https://www.slideshare.net/cvpaperchallenge/cvpr-2017-78294211) • [CVPR 2018 ใ](https://www.slideshare.net/cvpaperchallenge/cvpr-2018-102878612) • [CVPR 2019 ใ](https://www.slideshare.net/cvpaperchallenge/cvpr-2019) • [CVPR 2020 ใ](https://www.slideshare.net/cvpaperchallenge/cvpr-2020-237139930) • [ಈըೝࣝαʔϕΠv1ʢϝλαʔϕΠ ʣ](https://www.slideshare.net/cvpaperchallenge/v1-232973484) • [Vision and LanguageʢϝλαʔϕΠ ʣ](https://www.slideshare.net/cvpaperchallenge/vision-and-language-232926110) • [ΈࠐΈχϡʔϥϧωοτϫʔΫͷݚڀಈ](https://www.slideshare.net/ren4yu/ss-84282514) • [ConvNetͷྺ࢙ͱResNetѥछɺετϓϥΫςΟε](https://www.slideshare.net/ren4yu/convnetresnet) • [ΈࠐΈχϡʔϥϧωοτϫʔΫͷߴਫ਼ԽͱߴԽ](https://www.slideshare.net/ren4yu/ss-145689425) • [จհ: Fast R-CNN&Faster R-CNN](https://www.slideshare.net/takashiabe338/fast-rcnnfaster-rcnn) • [ʲମݕग़ʳSSD(Single Shot MultiBox Detector)ͷղઆ](https://www.acceluniverse.com/blog/developers/2020/02/SSD.html) • [ʲମݕग़ख๏ͷྺ࢙ : YOLOͷհʳ](https://qiita.com/cv_carnavi/items/68dcda71e90321574a2b) • [ը૾ೝࣝͱਂֶश](https://www.slideshare.net/ren4yu/ss-234439652) • [semantic segmentation αʔϕΠ](https://www.slideshare.net/yoheiokawa/semantic-segmentation-141471958) • [Semantic segmentation ৼΓฦΓ](https://speakerdeck.com/motokimura/semantic-segmentation-zhen-rifan-ri) • [[DLྠಡձ]SlowFast Networks for Video Recognition](https://www.slideshare.net/DeepLearningJP2016/dlslowfast-networks-for-video-recognition-202057397) • [ࡾ࣍ݩ܈ΛऔΓѻ͏χϡʔϥϧωοτϫʔΫͷαʔϕΠ](https://www.slideshare.net/naoyachiba18/ss-120302579) • [ࡾ࣍ݩ܈ΛऔΓѻ͏χϡʔϥϧωοτϫʔΫͷαʔϕΠ Ver. 2](https://speakerdeck.com/nnchiba/point-cloud-deep-learning-survey-ver-2) • [܈ਂֶश Meta-study](https://www.slideshare.net/naoyachiba18/metastudy) • [ୈ̍ճ ࠷৽ͷML,CV,NLP ؔ࿈จಡΈձ PointNet](https://www.slideshare.net/FujimotoKeisuke/point-net) • [ [DLྠಡձ]MeshͱDeep Learning Surface Networks & AtlasNet](https://www.slideshare.net/DeepLearningJP2016/dlmeshdeep-learning-surface-networks-atlasnet) • [จ·ͱΊɿConvolutional Pose Machines](https://qiita.com/masataka46/items/88f1a375ce8a485d9454) • [ίϯϐϡʔλϏδϣϯͷ࠷৽จௐࠪ 2D Human Pose Estimation ฤ](https://engineer.dena.com/posts/2019.11/cv-papers-19-2d-human-pose-estimation/) • [[ୈ2ճ3Dษڧձ ݚڀհ] Neural 3D Mesh Renderer (CVPR 2018)](https://www.slideshare.net/100001653434308/23d-neural-3d-mesh-renderer-cvpr-2018) • [DeepLabʹΘΓݱࡏͷSOTAͰ͋ΔFastFCN(JPU)ͷจղઆ](https://qiita.com/kamata1729/items/1b495658a63d76904ac3)
104