Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sprint
Search
Yasunobu Kawaguchi
PRO
July 20, 2021
Technology
8
1.7k
Sprint
Yasunobu Kawaguchi
PRO
July 20, 2021
Tweet
Share
More Decks by Yasunobu Kawaguchi
See All by Yasunobu Kawaguchi
Ninno LT
kawaguti
PRO
1
130
大人の学び - マイクの持ち方について
kawaguti
PRO
3
780
User Story Mapping + Inclusive Team
kawaguti
PRO
4
800
Creative Pair
kawaguti
PRO
1
200
Women in Agile
kawaguti
PRO
4
240
I could be Wrong!! - Learning from Agile Experts
kawaguti
PRO
9
5.2k
Replit Agent
kawaguti
PRO
2
1k
Mobbing Practices
kawaguti
PRO
3
550
RSGT Walk Through
kawaguti
PRO
6
2k
Other Decks in Technology
See All in Technology
Coding Agentに値札を付けろ
watany
3
580
技術選定を突き詰める 懇親会LT
okaru
2
1.2k
[新卒向け研修資料] テスト文字列に「うんこ」と入れるな(2025年版)
infiniteloop_inc
14
46k
分解し、導き、託す ログラスにおける“技術でリードする” 実践の記録
hryushm
1
500
経済メディア編集部の実務に小さく刺さるAI / small-ai-with-editorial
nkzn
2
480
ホワイトボックス& SONiC アーキテクチャ(全体像) - SONiC Workshop Japan 2025
ebiken
PRO
1
330
Google Cloud Next 2025 Recap マーケティング施策の運用及び開発を支援するAIの活用 / Use of AI to support operation and development of marketing campaign
atsushiyoshikawa
0
350
UIパフォーマンス最適化: AIを活用して100倍の速度向上を実現した事例
kinocoboy2
1
570
問 1:以下のコンパイラを証明せよ(予告編) #kernelvm / Kernel VM Study Kansai 11th
ytaka23
3
630
encoding/json v2を予習しよう!
yuyu_hf
PRO
1
220
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
720
SaaS公式MCPサーバーをリリースして得た学び
kawamataryo
5
1.4k
Featured
See All Featured
Side Projects
sachag
453
42k
Navigating Team Friction
lara
185
15k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Docker and Python
trallard
44
3.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.7k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Agile that works and the tools we love
rasmusluckow
329
21k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Language of Interfaces
destraynor
158
25k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Transcript
まずはタイミングを 合わせましょう、 というスライド
だいたいは ゴールしなければ ならない タイミングが 決まっています。
しかし、 手をつけてみなければ わからない という仕事も たくさんあります。
もちろん、 手慣れた仕事も あるでしょう。 経験もあり 自信もあるような。
必要な仕事を ゴールまでに 終わらせたい
8:2の法則 8割の仕事は 2割の努力で 終わる。 残りの2割に 8割の努力が 吸われる。
一発作業の危険 作って最後に見せたら 問題が発覚して大騒ぎ
ゴールに向けて、 内部スケジュールを 組みます。 その単位を スプリントと呼びます。
ゴール ゴール スプリントは同じ周期で繰り返します。
カレンダーに 直すと こんな感じ。 ※2週間スプリントの場合
例えば数か月先でも、 スプリントの切れ目が、 いつになるか、計画できます。
ゴール ゴール ゴールは相手のあることなので、 もしかしたらスプリントの切れ目と 合わないかもしれません。
ゴール ゴール ゴールは相手のあることなので、 もしかしたらスプリントの切れ目と 合わないかもしれません。 その場合は、 直前のスプリントまでに 完成させておきます。
クリスマスまでに7スプリント、とか。 (8スプリント目にやる分は間に合わない) 1 2 3 4 5 6 7
同じ周期なので、同じ人たち(チーム)で関わる限り、 だいたい同じぐらいのアウトプットが出せると ある程度、推測できます。
もちろんバラツキはあります
次のスプリントでどれくらい できるのでしょうか? ?
傾向をみると、 次はどのくらいの量をこなせるかは なんとなくわかりそうです。 ?
? この傾向のことをベロシティといいます。 巡航速度とか平均速度というような意味です。 傾向をみると、 次はどのくらいの量をこなせるかは なんとなくわかりそうです。
じゃあはじめての時は どうしたら? ?
じゃあはじめての時は どうしたら? ? データも経験もないので 誰にもわかりません。
チームは、スプリントを繰り返しながら、 学習を重ねていき、予測性を上げていきます。 きっと仕事も上手になっていくでしょう。
なので、最初に「繰り返す」 ということを決めてしまいます。 スプリントは同じ周期で繰り返します。
スプリントのたびに できたものを見てもらいます。 動くプロダクトを見てもらい、 フィードバックをもらうのです
耳の痛い フィードバックも あるでしょう 思ったより時間がない 思ったよりできない なんてことに気づくかも。
フィードバックの例 - ビルドできない - 性能が出ない - テスト難しい - デプロイ未整備 -
テスト用データがない - 仕様が理解できてない - 使いづらい - 意味が伝わらない - 欲しがられない - 儲かりそうにない - 複雑な人間関係の発見
Valuable Usable Feasible (会社にとって) 価値がある (開発者にとって) 現実に作れる (利用者にとって) 便利に使える ここを
目指している
スプリントは実戦の繰り返しです。 誰かが決めた全体計画にしたがうより、 チームの力が培われるでしょう。
集中して 作業します プロダクトにつながらない 作業やミーティングは 極力行わないようにします。 仕事ですから。
クロスファンクショナル (職能横断的) 必要なスキルをそろえた 少人数のチームで 仕事します。 部署間調整の ミーティング地獄 ダメ、ゼッタイ
後になって、想定外の事態が起きたとき、 チームの真価が発揮されるかもしれません
何も終わらせられない 場合は、 フィードバックも 受けられません。 計画は、 現実的に。
実績のベロシティ(完成した仕事量)を みながら、次のスプリントの予測をします。 ?
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログは これから作っていくものの リストです。 提供したい順番に 並べておきます。 プロダクトバックログ
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI 各PBIのサイズは 実際に仕事をする 人々が見積もります でかいな 小さいな 同じくらいかな プロダクトバックログ
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
チームはスプリントで 上から順に 開発・提供していき、 プロダクトバックログ
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
? 実績にかわります チームはスプリントで 上から順に 開発・提供していき、 プロダクトバックログ
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ ? 実績のベロシティを もとに、次はどの辺まで 行けそうかを予測します。
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ スプリントで 予想したより、 早く終わったら? すばらしい。 次のPBIを おかわりします。
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ スプリントで 予想したほど、 終わらなかったら? 予想か、見積もりが、 間違ってましたね。 新しい情報が手に入った!
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ PBIの 大きさの 見積もりは ちょくちょく 見直します バックログ リファインメント PBI PBI
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ よいバックログの条件 1. すぐに取りかかれる 2. 議論できる 3. 価値がある 4. 見積もり可能 5. サイズが適切 Ready Ready by Jeff Sutherland
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ 5. サイズが適切 5人のチームで 2週間のスプリントなら 1スプリントの ベロシティ予想の範囲内に 5x2 =10以上のPBIが 入っていること の目安 PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ PBI PBI PBI PBI PBI PBI PBI PBI PBI
PBI PBI PBI PBI PBI PBI PBI バックログ リファインメント 近づいてきたら 詳細度を上げたり、 適切なサイズに 分割します。
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ 直近3スプリント分は Ready Readyな よいプロダクトバックログを そろえていきます。 PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
プロダクトバックログ PBI PBI PBI PBI PBI PBI PBI PBI PBI
PBI もっと先の分も載せておきます。 細かくする努力は、急ぎません。 PBI PBI PBI
プロダクトバックログ PBI PBI PBI PBI PBI PBI PBI PBI PBI
PBI PBI PBI PBI プロダクトバックログは 誰にとってもオープンにして 意見をもらえるようにします
PBI PBI PBI PBI PBI PBI PBI PBI PBI PBI
? 実績にかわります チームはスプリントで 上から順に 開発・提供していき、 プロダクトバックログ
スプリントのたびに できたものを見てもらいます。 動くプロダクトを見てもらい、 フィードバックをもらうのです
プロダクトバックログ PBI PBI PBI PBI PBI PBI PBI PBI PBI
PBI PBI PBI PBI PBI PBI PBI 近づいてきたら 詳細度を上げたり、 適切なサイズに 分割します。 プロダクト バックログは 常に最新の情報 をもとに見直します
考えて、作って、評価を得ることを繰り返して 一歩一歩うまくなっていきます。
フィードバックをする人たちも、 うまく付き合う方法を学んでいきます。
タイミングを合わせて実戦を繰り返す ことを通じて、動くプロダクトと 作れるチーム、そして信頼を培います。
まずはスプリントの日程を 決めるところから 1 2 3 4 5 6 7
まずはタイミングを 合わせましょう、 というスライド