Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sports Analyst Meetup #13 (2022/11/26)
Search
Keisuke Fujii
November 26, 2022
Technology
0
820
Sports Analyst Meetup #13 (2022/11/26)
サッカーの軌道予測を用いたオフボール選手の評価(MLSA’22)
Keisuke Fujii
November 26, 2022
Tweet
Share
More Decks by Keisuke Fujii
See All by Keisuke Fujii
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
380
MLSA (Machine Learning and Data Mining for Sports Analytics) 2023 参加報告
keisuke198619
2
460
集団スポーツの動きに関するデータ分析の概要と今後の展望
keisuke198619
0
270
最新のスポーツアナリティクス研究論文はどこで読めるか?
keisuke198619
0
280
スポーツ戦術をAIのデータ解析で評価する
keisuke198619
1
1.1k
Sports Analyst Meetup #12 Keisuke Fujii
keisuke198619
0
880
Learning interaction rules from multi-animal trajectories via augmented behavioral models
keisuke198619
0
330
Other Decks in Technology
See All in Technology
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
38
16k
どちらを使う?GitHub or Azure DevOps Ver. 24H2
kkamegawa
0
1.1k
WACATE2024冬セッション資料(ユーザビリティ)
scarletplover
0
240
[Ruby] Develop a Morse Code Learning Gem & Beep from Strings
oguressive
1
190
なぜCodeceptJSを選んだか
goataka
0
170
第3回Snowflake女子会_LT登壇資料(合成データ)_Taro_CCCMK
tarotaro0129
0
200
Wantedly での Datadog 活用事例
bgpat
1
590
20241220_S3 tablesの使い方を検証してみた
handy
4
670
20241214_WACATE2024冬_テスト設計技法をチョット俯瞰してみよう
kzsuzuki
3
660
日本版とグローバル版のモバイルアプリ統合の開発の裏側と今後の展望
miichan
1
140
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
500
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
700
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Become a Pro
speakerdeck
PRO
26
5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
How GitHub (no longer) Works
holman
311
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Transcript
Sports Analyst Meetup #13 サッカーの軌道予測を用いた オフボール選手の評価(MLSA’22) 藤井 慶輔 (@keisuke_fj) 1
論文(詳細): https://arxiv.org/abs/2206.01899 MLSA’22: https://dtai.cs.kuleuven.be/events/MLSA22/index.php 寺西真聖さん、筒井和詩さん、武田一哉先生(全て名大)との共同研究です 2022/11/26
MLSA (Machine Learning and Data Mining for Sports Analytics)とは 機械学習(ML)とデータマイニング(DM)の主要な国際会議(ECML-PKDD)で
開催される、Sports AnalyticsのML-DM workshop (今回で9回目) 2 https://dtai.cs.kuleuven.be/events/MLSA22/links.php
MLSA’22のスケジュール 3 サッカー サッカー サッカー テニス サイクリング テニス サイクリング バスケ
サッカー サッカー テニス オンラインで25:00
サッカーの攻撃選手の評価 ボール周りの公開データのみ使用した評価(例:[Decroos+19]) 評価できる選手に限界、同時に複数選手の評価ができない 全選手の位置(非公開)を使用した評価 • ボールを受け取る選手の評価(例:[Spearman18]) • 得点に関係なくスペースを作る動きの評価(例:[Fernandez+18])
ボールを受け取らず得点機会を生み出す選手の評価が困難 本研究の概要 オフボール選手が、機械学習を 用いて予測された動きと比べて、 どのように動いたことが得点機会 の創出に寄与するかを評価 4 予測(薄色)より、A1がD1を引き付け A2のスペースを作った!
提案: Creating Off-Ball Scoring Opportunity (C-OBSO) 目的: ボール非保持選手 𝑖が得点機会をどれだけ創ったか(評価値) 𝑽𝒊
の算出 方法: シュート等をした選手 𝑘の評価 𝑽𝒌 を、選手 𝑖を軌道予測した時𝑽𝒌 ′ と比較 実際の選手𝑘の評価 𝑽𝒌 − 選手i の予測に基づく選手𝑘の評価 𝑽𝒌 ′ 𝑉𝑖 = − 選手 𝑖 選手 𝑖 (予測) 選手 𝑘 選手 𝑘 守備は 2人を 予測 5
参考:ボール非保持の評価 𝑽𝒌 (OBSO [Spearman18]) コート上の地点 𝑟に価値(下記3要素)を割り当てる • 占有率(Control):𝐶𝑟 • 遷移率(Transition):𝑇𝑟
• 得点率(Score):𝑆𝑟 ある試合状態𝐷における得点確率を 𝑽𝒌 とし、以下のように表す 𝑽𝒌 = 𝑃 𝐺 𝐷 = Σ𝑟∈ℝ×ℝ 𝑃(𝐶𝑟 ∩ 𝑇𝑟 ∩ 𝑆𝑟 |𝐷) →ボールが来たらどれだけ点を入れられるか(ポジショニング)を評価 占有率 𝐶 遷移率 𝑇 得点率 𝑆 ボール非保持の評価 OBSO 6
C-OBSO の算出例 A1(評価対象)が予測よりD1選手を引き付けてA2に貢献 A2のスペースをA1が作った! 𝟎. 𝟎𝟎𝟕𝟗 C−OBSO: 𝑉A1 = 𝑉A2
− 𝑉A2 ′ 0.0409 0.0330 (実際) (予測) 7 予測(薄色)より、 A1がD1を引き付けた
データセット J1 2019 横浜FM 全対戦試合: 34試合(データスタジアム社(*1)) • イベントデータ(パス・シュート等の行動ラベルとボール座標) • トラッキングデータ(選手全員とボールの座標)
選手軌道予測(グラフ変分RNN[Yeh+19]を利用) と評価 • 2秒の系列を使ってその後の4秒を軌道予測(攻撃1選手、守備2選手) • 予測: 対戦相手の攻撃系列(*2) 94208系列で学習、10477系列で検証 • 評価: 横浜FMのシュート系列(*3) 412系列で推論、C-OBSO算出 *1 情報システム研究機構統計数理研究所 医療健康データ科学研究センター、データスタジアム株式会社 *2 攻撃系列:同一チームの連続した攻撃 *3 シュート系列:シュートに至るまでの同一チームの連続した攻撃(連続していない攻撃は除外) 8
結果例: J1 2019 横浜FMのC-OBSOと年俸*との関係 • C-OBSOと年俸は正の相関(𝜌 = 0.45, 𝑝 <
0.05)だがOBSOは相関なし • C-OBSO-年俸の外れ値は、(最)優秀選手賞を受賞 C-OBSOは選手の総合評価(年俸,個人賞)を説明できる可能性あり 9 *1 Soccer-Money.net https://soccer-money.net (アクセス日2021/1/9) 優秀選手賞 最優秀選手賞
実験結果:得点上位選手の有識者による採点*とC-OBSO • 採点は上位3選手全員に得点と有意な相関あり(𝑝 < 0.05) • 仲川選手のみC-OBSOと正の相関(𝜌 = 0.75, 𝑝
< 0.05)、他の選手はなし • 仲川選手は味方への貢献も高かったため、平均採点1位&MVPに繋がった と推察される 10 0 0.005 0.01 0.015 0.02 0.025 4 5 6 7 8 C-OBSO rating Nakagawa * サッカーダイジェストweb J1採点・寸評 https://www.soccerdigestweb.com/tag_list/tag_search=1&tag_id=120(参照2022/1/9) 0 0.005 0.01 0.015 0.02 0.025 4 5 6 7 8 C-OBSO rating Marcos
まとめ • 得点機会を創出するオフボールの選手の評価指標C-OBSOを提案 • 正確な選手軌道予測に基づき、実際の評価値との差分で評価 • C-OBSOは、味方の得点機会を創出する指標としての有効性を示唆 今後の展望: • チームの特性に合わせた評価
• シュート以外の場面も含めた評価 • 軌道予測を用いずに、行動価値を直接計算 謝辞 • データ提供:情報・システム研究機構統計数理研究所 医療健康データ 科学研究センター、データスタジアム 株式会社 • 議論:Scott Atom氏、大西 正輝氏 • 科研費:20H04075, 20H04087, JST Presto JPMJPR20CA Full paper: https://arxiv.org/abs/2206.01899 11