Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
画像処理論セミナー7-1-3
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kuno Ayana
July 02, 2020
Education
0
28
画像処理論セミナー7-1-3
Kuno Ayana
July 02, 2020
Tweet
Share
More Decks by Kuno Ayana
See All by Kuno Ayana
アクセシビリティ、まだ完璧じゃないけど ── “今から”できること
kno3a87
2
920
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
1.8k
Dart 参戦!!静的型付き言語界の隠れた実力者
kno3a87
0
240
Flutterを言い訳にしない!アプリの使い心地改善テクニック5選🔥
kno3a87
3
800
iOS 18 がやってきた!
kno3a87
1
240
おうちハッカソン #2
kno3a87
0
140
ミクアカ成果報告会
kno3a87
0
50
SXSW2021
kno3a87
0
62
ミクアカ中間発表会
kno3a87
0
38
Other Decks in Education
See All in Education
Chapitre_2_-_Partie_2.pdf
bernhardsvt
0
120
RGBでも蛍光を!? / RayTracingCamp11
kugimasa
2
350
【ベテランCTOからのメッセージ】AIとか組織とかキャリアとか気になることはあるけどさ、個人の技術力から目を背けないでやっていきましょうよ
netmarkjp
0
340
【洋書和訳:さよならを待つふたりのために】第2章 ガン特典と実存的フリースロー
yaginumatti
0
190
1014
cbtlibrary
0
520
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
47k
1021
cbtlibrary
0
400
160人の中高生にAI・技術体験の講師をしてみた話
shuntatoda
0
250
React完全入門
mickey_kubo
1
110
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
720
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
Featured
See All Featured
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
120
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
310
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Speed Design
sergeychernyshev
33
1.5k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
720
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
49k
Bash Introduction
62gerente
615
210k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Writing Fast Ruby
sferik
630
62k
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
440
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
Transcript
,VOP"ZBOB σΟδλϧը૾ॲཧ ٯϑΟϧλɾΟʔφϑΟϧλʹΑΔը૾෮ݩ
લճͷ෮़ɿ΅͚ɾͿΕͱ ࣍ݩσϧλؔ δ(x, y) ྼԽը૾ g(x, y) ݪը૾ f(x, y)
લճͷ෮़ɿ֦͕ΓؔͷϞσϧԽ ΅͚ͷ֦͕ΓؔˠΨεͱۙࣅ ͿΕͷ֦͕ΓؔˠͿΕͷํВʹͷΈ෯XʹҰ࣍ݩͰ͕͍ͬͯΔؔͱۙࣅ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ g(x, y) = f(x, y) * h(x, y) ྼԽը૾
ݪը૾ ֦͕Γؔ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ g(x, y) = f(x, y) * h(x, y) ྼԽը૾
ݪը૾ G(u, v) = F(u, v)H(u, v) ϑʔϦΤม 'ྼԽը૾ 'ݪը૾ ϑΟϧλ ֦͕Γؔ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ K(u, v) K(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ 1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ 1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v) 'ྼԽը૾ 'ݪը૾ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v) 'ྼԽը૾ 'ݪը૾ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v) 'ྼԽը૾ 'ݪը૾ ϑʔϦΤٯม g(x,
y) = f(x, y) ྼԽը૾ ݪը૾ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ 1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ ͘͠ݶΓͳ͘ʹ͍ۙͩͬͨΒʁ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ ͘͠ݶΓͳ͘ʹ͍ۙͩͬͨΒʁ ൃࢄͯ͠͠·͏ʂ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) + N(u, v)
ൃࢄ͢ΔͱϊΠζ͕૿෯ͯ͠͠·͏ ˠ) V W ͕ʹ͍ۙͱ͖ʹൃࢄ͠ͳ͍ϑΟϧλΛߟ͑Δඞཁ͕͋Δ 'ϊΠζ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw
(u, v) ̂ f(x, y) f(x, y)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ΟʔφϑΟϧλ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ϊΠζ͕ͷ߹
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ϊΠζ͕ͷ߹ ͕͜͜ʹͳΔͷͰ ٯϑΟϧλͱಉ༷ʹΔ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ͍͍ͩͨϊΠζݪը૾ະ దͳఆϵΛஔ͘͜ͱ͕ଟ͍
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y)
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ ൃࢄͯ͠͠·͍ըૉ͕ൃࢄ͍ͯ͠Δ θϩΛؚΜͰ͍ΔͨΊ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ ൃࢄͯ͠͠·͍ըૉ͕ൃࢄ͍ͯ͠Δ θϩΛؚΜͰ͍ΔͨΊ ൃࢄ͍ͯ͠ͳ͍
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ Ӷʹ෮ݩ͞ΕΔ ϊΠζ૿෯͢Δ ϊΠζ૿෯͞Εͳ͍ ΅͚ɾͿΕͷ෮ݩ͕͍
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ Ӷʹ෮ݩ͞ΕΔ ϊΠζ૿෯͢Δ ϊΠζ૿෯͞Εͳ͍ ΅͚ɾͿΕͷ෮ݩ͕͍ ϵ͕େ͖͘ͳΔͱ͕େ͖͘ͳΔͷͰ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ Ӷʹ෮ݩ͞ΕΔ ϊΠζ૿෯͢Δ ϊΠζ૿෯͞Εͳ͍ ΅͚ɾͿΕͷ෮ݩ͕͍ ϵ͕େ͖͘ͳΔͱ͕େ͖͘ͳΔͷͰ ͜͜ͷ͕খ͘͞ͳͬͯ͋·ΓϑΟϧλ͕ޮ͔ͳ͘ͳΔ