Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTとLLMを活用して1週間で個人開発をした話
Search
KNR
August 30, 2023
Technology
2
3.7k
ChatGPTとLLMを活用して1週間で個人開発をした話
2023/08/31に開催された、「みんなのLLM活用実践LT編〜エンジニアのためのLLM実践ガイド #5」の登壇内容です。
KNR
August 30, 2023
Tweet
Share
More Decks by KNR
See All by KNR
GPTs活用事例集
knr109
6
5.4k
2023年はたくさんアウトプットしたよ
knr109
1
1.2k
要件定義入門 (失敗しないために必要なこと)
knr109
50
22k
生成AI×ノーコード (スピーディーなアプリ開発の新時代)
knr109
3
5.1k
(新人)エンジニアが開発しやすいREADMEの書き方
knr109
19
12k
クリエイター広場を作りました
knr109
0
210
Other Decks in Technology
See All in Technology
ホリスティックテスティングの右側も大切にする 〜2つの[はか]る〜 / Holistic Testing: Right Side Matters
nihonbuson
PRO
0
490
AIに全任せしないコーディングとマネジメント思考
kikuchikakeru
0
400
Wasmで社内ツールを作って配布しよう
askua
0
180
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
1
130
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
580
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
4
670
経験がないことを言い訳にしない、 AI時代の他領域への染み出し方
parayama0625
0
300
Vision Language Modelと自動運転AIの最前線_20250730
yuyamaguchi
3
1.1k
生成AIによる情報システムへのインパクト
taka_aki
1
240
Microsoft Learn MCP/Fabric データエージェント/Fabric MCP/Copilot Studio-簡単・便利なAIエージェント作ってみた -"Building Simple and Powerful AI Agents with Microsoft Learn MCP, Fabric Data Agent, Fabric MCP, and Copilot Studio"-
reireireijinjin6
1
220
TypeScript 上達の道
ysknsid25
23
5.2k
Tableau API連携の罠!?脱スプシを夢見たはずが、逆に依存を深めた話
cuebic9bic
2
190
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.4k
It's Worth the Effort
3n
185
28k
Optimizing for Happiness
mojombo
379
70k
Navigating Team Friction
lara
188
15k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
RailsConf 2023
tenderlove
30
1.2k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
ChatGPTとLangChainを活用 して1週間で個人開発をした話 KNR
この発表で学べること ChatGPTを使った開発アシスタントのやり方 LangChainを使った開発のやり方や応用例
目次 自己紹介 実際に開発したアプリ ChatGPTを使った開発アシスタント LangChainの活用 最後に 1. 2. 3. 4.
5.
目次 自己紹介 実際に開発したアプリ ChatGPTを使った開発アシスタント LangChainの活用 最後に 1. 2. 3. 4.
5.
KNR 新卒でWeb系開発会社に入社 (2021) 現在は執行役員 (2023) 2022年にQiita 年間 TOP Contributorを受賞 自己紹介
目次 自己紹介 実際に開発したアプリ ChatGPTを使った開発アシスタント LangChainの活用 最後に 1. 2. 3. 4.
5.
実際に開発したアプリ
実際に開発したアプリ
開発した理由 いつでも見返せる「ストック型」のAIツール紹介サービスが欲しかった
ChatGPTとLangChainを活用した概要 CHatGPTを使って要件定義、設計などの開発アシスタントをしてもらう LangChainを利用しAIツールの紹介記事を自動生成 ChatGPT LangChain
目次 自己紹介 実際に開発したアプリ ChatGPTを使った開発アシスタント LangChainの活用 最後に 1. 2. 3. 4.
5.
ChatGPTで生成したもの 要件定義 基本設計
要件定義の成果物 機能の洗い出し 非機能要件の洗い出し
前提条件を伝えて機能洗い出し (プロンプト)
前提条件を伝えて機能を洗い出してもらう (回答)
各機能の工数見積もりと優先度付けをしてもらう (プロンプト)
各機能の工数見積もりと優先度付けをしてもらう (プロンプト)
非機能要件の洗い出し (プロンプト)
非機能要件の洗い出し (回答)
最終的な成果物をまとめてもらう (回答)
設計の成果物 データベース設計 ER図 APIドキュメント 画面設計書
データベース設計 (プロンプト)
データベース設計 (回答)
ER図の作成 (プロンプト)
ER図の作成 (回答)
ER図の作成 (回答)
API仕様書 (プロンプト)
API仕様書 (回答)
画面設計書 (プロンプト)
画面設計書 (回答)
設計フェーズの成果物 ER図 テーブル設計書 API仕様書 画面設計
技術選定・構成図
技術選定・構成図
目次 自己紹介 実際に開発したアプリ ChatGPTを使った開発アシスタント LangChainの活用 最後に 1. 2. 3. 4.
5.
LangChainとは ChatGPTなどの言語系モデルの機能拡張を 効率的に実装するためのライブラリ
LangChainの活用例 様々な言語モデルを使える (Models) プロンプトをテンプレート化できる (Prompt) 少数の教師データを入れる (few-shot learning) PDFやURLなど外部データを使える (Indexes)
LangChainの活用例 LangChainで実装した機能
記事の自動生成 (前)
記事の自動生成 (中)
記事の自動生成 (後)
使用したライブラリ
モデルの選択 (Models)
プロンプトテンプレートとFewShotPrompt (Prompt) Few shot Prompt prompt template
記事の自動生成 (後)
プロンプトテンプレートとFewShotPrompt (Prompt) Few shot Prompt prompt template
プロンプトテンプレートとFewShotPrompt (Prompt)
プロンプトテンプレートとFewShotPromptの出力 (Prompt)
リクエストで送られてきたURLの解析 (Indexes) urlのバリデーションチェック url先のコンテンツを取得
リクエストで送られてきたURLの解析 (Indexes)
APIを作成し処理をまとめる バリデーションチェック URL先のコンテンツ取得 GPTへプロンプトを リクエスト
リクエストを送り一連の処理を確認
目次 自己紹介 実際に開発したアプリ ChatGPTを使った開発アシスタント LangChainの活用 最後に 1. 2. 3. 4.
5.
まとめ GPTを開発アシスタントとして使うことで工数を大幅に削減できた LangChainとGPTを組み合わせることで拡張性のある開発を実現できる
まとめ ご清聴ありがとうございました 今回の内容をより詳しく解説した記事です(Zenn)