Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
Search
konabuta
June 11, 2021
Technology
0
2k
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
June 11, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
190
Azure Machine Learning 大規模機械学習
konabuta
0
290
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.3k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
360
Azure Machine Learning - Ignite & Build Update (20210603)
konabuta
0
850
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.1k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.1k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
470
Other Decks in Technology
See All in Technology
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
160
Working as a Server-side Engineer at LY Corporation
lycorp_recruit_jp
0
390
re:Invent をおうちで楽しんでみた ~CloudWatch のオブザーバビリティ機能がスゴい!/ Enjoyed AWS re:Invent from Home and CloudWatch Observability Feature is Amazing!
yuj1osm
0
140
APIとはなにか
mikanichinose
0
120
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.5k
20241218_今年はSLI/SLOの導入を頑張ってました!
zepprix
0
180
【令和最新版】ロボットシミュレータ Genesis x ROS 2で始める快適AIロボット開発
hakuturu583
1
270
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
340
2024年にチャレンジしたことを振り返るぞ
mitchan
0
150
サーバーなしでWordPress運用、できますよ。
sogaoh
PRO
0
130
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
5
720
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
120
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Building Adaptive Systems
keathley
38
2.3k
RailsConf 2023
tenderlove
29
940
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Site-Speed That Sticks
csswizardry
2
190
Six Lessons from altMBA
skipperchong
27
3.5k
Bash Introduction
62gerente
609
210k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
The Invisible Side of Design
smashingmag
298
50k
YesSQL, Process and Tooling at Scale
rocio
170
14k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.4k
Transcript
Azure Machine Learning ハンズオンシリーズ 基礎編 2021年6月11日(金) 16:00 - 17:30
Slack ワークスペース
None
None
None
None
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
https://aka.ms/ml-docs
None
Azure Machine Learning Workspace とは? アーキテクチャと主要な概念 - Azure Machine Learning
| Microsoft Docs 関連 Azure サービス リソース アセット
付属リソース Storage Key Vault Container Registry App Insights モデル推論サービス AKS
Cluster ACI 学習データのデータソース Storage Data Lake SQL モデル学習のサービス Compute Instance Compute Clusters 多くの PaaS サービスに 依存している ※ Microsoft Managed のため、Azure Portal からは見えない
None
None
None
https://aka.ms/titanic0611
None
作成者 • Notebooks - コーディング環境 • Automated ML - 自動機械学習
• Designer - GUI 機械学習プロセス実行 アセット • Datasets - データの登録と管理 • Experiments - 実験記録 • Pipelines - 学習・推論のパイプライン • Models - モデル管理 • Endpoints - エンドポイント管理 管理 (環境・データ) • Compute - 学習・推論の計算環境 • Datastores - データソースの設定 • Data Labeling - ラベリング機能
Python & R ユーザも Azure ML studio を併用します
ユーザーの入力 特徴量 エンジニアリング アルゴリズム の選択 ハイパーパラメータ のチューニング モデルの リーダーボードと解釈 データセット
設定と制約 76% 34% 82% 41% 88% 72% 81% 54% 73% 88% 90% 91% 95% 68% 56% 89% 89% 79% 順位 モデル スコア 1 95% 2 76% 3 53% … 自動機械学習は、与えられたデータに対して「最高のモデル」を探索するために、 特徴量エンジニアリング、アルゴリズムとハイパーパラメータの選択を自動実行します。
• 直感的なマウス操作でパイプライン構築 • 特徴量エンジニアリング • モデル学習 (回帰、分類、クラスタリング) • 推論 (リアルタイム
& バッチ) • カスタムモデル・スクリプト (Python, R) 機械学習のモデル構築、テスト、デプロイするためのビジュアルパイプライン ※ 参考 : Azure Machine Learning デザイナー とは https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-designer
Python & R の実装をサポートする実験環境
• 様々なスペックのVMを選択・起動 • 自動スケールアウト・ダウン • ジョブ管理、スケジュール管理 学習コード train train train
ジョブ・スケジュール管理 • Job に必要なライブラリ・データを自動で準備 ・・・ • 低優先度オプション : 80% 割引で利用可能 モデル学習・推論のためのクラウドネイティブなクラスター環境
None
Machine Learning Practices & Tips Microsoft Machine Learning Collection Data
Scientist 向けページ
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
https://forms.office.com/r/dV5heemZnv
None
None