Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
Search
konabuta
June 11, 2021
Technology
0
2k
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
June 11, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
230
Azure Machine Learning 大規模機械学習
konabuta
0
350
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.5k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
410
Azure Machine Learning - Ignite & Build Update (20210603)
konabuta
0
940
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.2k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
540
Other Decks in Technology
See All in Technology
衛星運用をソフトウェアエンジニアに依頼したときにできあがるもの
sankichi92
1
260
第64回コンピュータビジョン勉強会「The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition」
x_ttyszk
0
230
〜『世界中の家族のこころのインフラ』を目指して”次の10年”へ〜 SREが導いたグローバルサービスの信頼性向上戦略とその舞台裏 / Towards the Next Decade: Enhancing Global Service Reliability
kohbis
3
1.2k
AIエージェントが書くのなら直接CloudFormationを書かせればいいじゃないですか何故AWS CDKを使う必要があるのさ
watany
18
7.3k
AI エージェントと考え直すデータ基盤
na0
19
7.6k
安定した基盤システムのためのライブラリ選定
kakehashi
PRO
3
120
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
390
american aa airlines®️ USA Contact Numbers: Complete 2025 Support Guide
aaguide
0
500
公開初日に Gemini CLI を試した話や FFmpeg と組み合わせてみた話など / Gemini CLI 初学者勉強会(#AI道場)
you
PRO
0
1.2k
ABEMAの本番環境負荷試験への挑戦
mk2taiga
5
1k
AIでテストプロセス自動化に挑戦する
sakatakazunori
1
300
推し書籍📚 / Books and a QA Engineer
ak1210
0
130
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Facilitating Awesome Meetings
lara
54
6.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
108
19k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Scaling GitHub
holman
460
140k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
A better future with KSS
kneath
238
17k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
282
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
Azure Machine Learning ハンズオンシリーズ 基礎編 2021年6月11日(金) 16:00 - 17:30
Slack ワークスペース
None
None
None
None
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
https://aka.ms/ml-docs
None
Azure Machine Learning Workspace とは? アーキテクチャと主要な概念 - Azure Machine Learning
| Microsoft Docs 関連 Azure サービス リソース アセット
付属リソース Storage Key Vault Container Registry App Insights モデル推論サービス AKS
Cluster ACI 学習データのデータソース Storage Data Lake SQL モデル学習のサービス Compute Instance Compute Clusters 多くの PaaS サービスに 依存している ※ Microsoft Managed のため、Azure Portal からは見えない
None
None
None
https://aka.ms/titanic0611
None
作成者 • Notebooks - コーディング環境 • Automated ML - 自動機械学習
• Designer - GUI 機械学習プロセス実行 アセット • Datasets - データの登録と管理 • Experiments - 実験記録 • Pipelines - 学習・推論のパイプライン • Models - モデル管理 • Endpoints - エンドポイント管理 管理 (環境・データ) • Compute - 学習・推論の計算環境 • Datastores - データソースの設定 • Data Labeling - ラベリング機能
Python & R ユーザも Azure ML studio を併用します
ユーザーの入力 特徴量 エンジニアリング アルゴリズム の選択 ハイパーパラメータ のチューニング モデルの リーダーボードと解釈 データセット
設定と制約 76% 34% 82% 41% 88% 72% 81% 54% 73% 88% 90% 91% 95% 68% 56% 89% 89% 79% 順位 モデル スコア 1 95% 2 76% 3 53% … 自動機械学習は、与えられたデータに対して「最高のモデル」を探索するために、 特徴量エンジニアリング、アルゴリズムとハイパーパラメータの選択を自動実行します。
• 直感的なマウス操作でパイプライン構築 • 特徴量エンジニアリング • モデル学習 (回帰、分類、クラスタリング) • 推論 (リアルタイム
& バッチ) • カスタムモデル・スクリプト (Python, R) 機械学習のモデル構築、テスト、デプロイするためのビジュアルパイプライン ※ 参考 : Azure Machine Learning デザイナー とは https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-designer
Python & R の実装をサポートする実験環境
• 様々なスペックのVMを選択・起動 • 自動スケールアウト・ダウン • ジョブ管理、スケジュール管理 学習コード train train train
ジョブ・スケジュール管理 • Job に必要なライブラリ・データを自動で準備 ・・・ • 低優先度オプション : 80% 割引で利用可能 モデル学習・推論のためのクラウドネイティブなクラスター環境
None
Machine Learning Practices & Tips Microsoft Machine Learning Collection Data
Scientist 向けページ
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
https://forms.office.com/r/dV5heemZnv
None
None