Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning - Ignite & Build Update ...
Search
konabuta
June 03, 2021
Technology
0
850
Azure Machine Learning - Ignite & Build Update (20210603)
Azure Machine Learning Ignite & Build Update
https://dllab.connpass.com/event/213776/
konabuta
June 03, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
190
Azure Machine Learning 大規模機械学習
konabuta
0
290
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.3k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
360
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.1k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.1k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
470
Other Decks in Technology
See All in Technology
re:Invent をおうちで楽しんでみた ~CloudWatch のオブザーバビリティ機能がスゴい!/ Enjoyed AWS re:Invent from Home and CloudWatch Observability Feature is Amazing!
yuj1osm
0
140
効率的な技術組織が作れる!書籍『チームトポロジー』要点まとめ
iwamot
2
120
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
210
怖くない!ゼロから始めるPHPソースコードコンパイル入門
colopl
0
180
最近のSfM手法まとめ - COLMAP / GLOMAPを中心に -
kwchrk
5
1.2k
[トレノケ雲の会 mod.13] 3回目のre:Inventで気づいたこと -CloudOperationsを添えて-
shintaro_fukatsu
0
110
AWS re:Invent 2024 recap
hkoketsu
0
120
20241220_S3 tablesの使い方を検証してみた
handy
4
700
watsonx.ai Dojo #5 ファインチューニングとInstructLAB
oniak3ibm
PRO
0
200
Wantedly での Datadog 活用事例
bgpat
2
720
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
330
プロダクト組織で取り組むアドベントカレンダー/Advent Calendar in Product Teams
mixplace
0
170
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
137
6.7k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Speed Design
sergeychernyshev
25
680
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Adopting Sorbet at Scale
ufuk
73
9.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Designing for Performance
lara
604
68k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Designing Experiences People Love
moore
138
23k
Transcript
Azure Machine Learning Ignite & Build アップデート 女部田啓太
アジェンダ
アジェンダ
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
アジェンダ
最新アップデート情報
Microsoft が PyTorch の Enterprise サポートを提供 PyTorch Enterprise | PyTorch
Delivering reliable production experiences with PyTorch Enterprise on Microsoft Azure - Microsoft Open Source Blog
Compute Instance が Visual Studio Code に対応
コンピューティング インスタンスを作成および管理する - Azure Machine Learning | Microsoft Docs Compute
Instance のカスタム構成
デモンストレーション
None
マネージド オンライン エンドポイントを使用して ML モデルをデプロイする - Azure Machine Learning |
Microsoft Docs Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなオンライン推論環境
バッチ エンドポイントを使用したバッチ スコアリング - Azure Machine Learning | Microsoft Docs
Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなバッチ推論環境
CLI & REST API のエンハンスメント 2.0 CLI を使用してモデルをトレーニングする (ジョブを作成する) -
Azure Machine Learning | Microsoft Docs Announcing the new CLI and ARM REST APIs for Azure Machine Learning - Microsoft Tech Community
デモンストレーション
None
None
MLFlow Integration Experiments Local machine Virtual machine Azure ML Compute
Azure Databricks ML Tracking and Model Deployment Azure Machine Learning Experiments and Metrics Tracking Metrics Artifacts Logging API Tracking URI Model API 実験メトリックとモデル管理の連携
集計されたモデル精度指標では捉えられないモデル誤差の傾向分析 ① Identification ② Diagnostics 誤差が大きいコホートを特定する 木構造で各条件下におけるエラー率・カバレッジを表示 対象のコホートを比較し深掘り分析する データ探索 グローバル解釈
ローカル解釈 what-if 分析 Learn More : Error Analysis
ラベリング機能のインスタンスセグメンテーションへの対応 画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs
画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs テキストデータ用のラベリング機能
アジェンダ
基礎編 2021年6月11日(金) 16:00 - 17:30 https://dllab.connpass.com/event/211482/
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
None
None