Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Azure Machine Learning - Ignite & Build Update ...
Search
konabuta
June 03, 2021
Technology
0
950
Azure Machine Learning - Ignite & Build Update (20210603)
Azure Machine Learning Ignite & Build Update
https://dllab.connpass.com/event/213776/
konabuta
June 03, 2021
Tweet
Share
More Decks by konabuta
See All by konabuta
AI at Scale
konabuta
1
230
Azure Machine Learning 大規模機械学習
konabuta
0
360
MLflow と ONNX で実現するクラウドネイティブな MLOps
konabuta
1
2.5k
Azure Machine Learning ハンズオン モデル解釈
konabuta
1
1.1k
クォータ申請手順 - Azure Machine Learning Compute
konabuta
0
420
Azure Machine Learning ハンズオンシリーズ 基礎編 資料
konabuta
0
2.1k
Azure Machine Learning 実験サービスとセキュリティ 2020年11月アップデート情報 (2020-11-12)
konabuta
0
1.2k
機械学習モデルの解釈可能性について (2020-11-11)
konabuta
2
1.2k
Microsoft の Responsible AI への取り組み (2020-11-10)
konabuta
1
550
Other Decks in Technology
See All in Technology
MySQL HeatWave:サービス概要のご紹介
oracle4engineer
PRO
2
1.6k
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
910
Infrastructure as Prompt実装記 〜Bedrock AgentCoreで作る自然言語インフラエージェント〜
yusukeshimizu
1
160
Intro to Software Startups: Spring 2025
arnabdotorg
0
270
[kickflow]20250319_少人数チームでのAutify活用
otouhujej
0
140
Lambda management with ecspresso and Terraform
ijin
2
170
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
210
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
770
Delegate authentication and a lot more to Keycloak with OpenID Connect
ahus1
0
240
メルカリIBIS:AIが拓く次世代インシデント対応
0gm
2
420
九州の人に知ってもらいたいGISスポット / gis spot in kyushu 2025
sakaik
0
190
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
230
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Balancing Empowerment & Direction
lara
2
570
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Automating Front-end Workflow
addyosmani
1370
200k
Code Review Best Practice
trishagee
69
19k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Designing for Performance
lara
610
69k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Transcript
Azure Machine Learning Ignite & Build アップデート 女部田啓太
アジェンダ
アジェンダ
Azure Machine Learning
Azure M achine Learning service 実験的なモデル開発 ⾃動機械学習 デザイナー Pytyon /
R モデル検証 パッケー ジ化と Azure Container Instnaces での検証 モデル学習 コンピュー ティング クラスター モニタリング モデルのモニタリング デプロイ スケー ラブルな kubernetes サ ー ビス へ のデプロイ CI/CD & モデル再学習 GitHub & Azure DevOps 統合・連携
Responsible Industry leading MLOps Open & Interoperable For all skill
levels あらゆるスキルレベルに対応し、 ML の生産性を向上 機械学習ライフサイクル の運用管理 責任のある ML ソリューションの構築 オープンテクノロジーの採用 と相互運用性の実現
アジェンダ
最新アップデート情報
Microsoft が PyTorch の Enterprise サポートを提供 PyTorch Enterprise | PyTorch
Delivering reliable production experiences with PyTorch Enterprise on Microsoft Azure - Microsoft Open Source Blog
Compute Instance が Visual Studio Code に対応
コンピューティング インスタンスを作成および管理する - Azure Machine Learning | Microsoft Docs Compute
Instance のカスタム構成
デモンストレーション
None
マネージド オンライン エンドポイントを使用して ML モデルをデプロイする - Azure Machine Learning |
Microsoft Docs Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなオンライン推論環境
バッチ エンドポイントを使用したバッチ スコアリング - Azure Machine Learning | Microsoft Docs
Announcing managed endpoints in Azure Machine Learning for simplified model deployment - Microsoft Tech Community マネージドなバッチ推論環境
CLI & REST API のエンハンスメント 2.0 CLI を使用してモデルをトレーニングする (ジョブを作成する) -
Azure Machine Learning | Microsoft Docs Announcing the new CLI and ARM REST APIs for Azure Machine Learning - Microsoft Tech Community
デモンストレーション
None
None
MLFlow Integration Experiments Local machine Virtual machine Azure ML Compute
Azure Databricks ML Tracking and Model Deployment Azure Machine Learning Experiments and Metrics Tracking Metrics Artifacts Logging API Tracking URI Model API 実験メトリックとモデル管理の連携
集計されたモデル精度指標では捉えられないモデル誤差の傾向分析 ① Identification ② Diagnostics 誤差が大きいコホートを特定する 木構造で各条件下におけるエラー率・カバレッジを表示 対象のコホートを比較し深掘り分析する データ探索 グローバル解釈
ローカル解釈 what-if 分析 Learn More : Error Analysis
ラベリング機能のインスタンスセグメンテーションへの対応 画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs
画像とテキスト ドキュメントにラベルを付ける | Microsoft Docs テキストデータ用のラベリング機能
アジェンダ
基礎編 2021年6月11日(金) 16:00 - 17:30 https://dllab.connpass.com/event/211482/
Python による機械学習入門 編 2021年6月25日(金) 16:00 - 17:30 https://dllab.connpass.com/event/214093/
microsoft/machine-learning-collection: machine learning tech collections at Microsoft and subsidiaries.
機械学習プロジェクトを進めるためのガイドブック Machine Learning Best Practices (azure.github.io)
None
None