Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
散布図と相関 / Scatter Plots and Correlations
Search
Kenji Saito
PRO
December 09, 2023
Business
0
64
散布図と相関 / Scatter Plots and Correlations
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第5回で使用したスライドです。
Kenji Saito
PRO
December 09, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
29
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
9
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Business
See All in Business
【After】サービス紹介資料③_HP掲載用
redeslide
0
550
【Marvel株式会社】Corporate Profile
00marvel
0
2.8k
re:Infrastructure_for the NextGen AI/ML and Beyond
ichichi
0
350
NEXERA inc. | Company Deck
nexera
0
8k
pmconf2024 意思決定の質とスピードを上げるドキュメントの極意
issei123
3
7.1k
ストーリーテリングでチームに”熱"を伝える🔥
inagakikay
1
11k
行動なしに良い仮説思考はできない
tumada
PRO
8
2.1k
デジタルツールを活用した収用委員会運営プロジェクト
tokyo_metropolitan_gov_digital_hr
1
340
CompanyDeck_v6.pdf
xid
3
17k
ドローンを活用した汚泥焼却炉内点検のDX
tokyo_metropolitan_gov_digital_hr
1
370
Theoria technologies:About Us
theoriatec2024
1
5.8k
(5枚)メタ思考のある人、メタ思考のない人の違いとは?
nyattx
PRO
2
160
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Designing for Performance
lara
604
68k
KATA
mclloyd
29
14k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
GitHub's CSS Performance
jonrohan
1031
460k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Mobile First: as difficult as doing things right
swwweet
222
9k
The Cost Of JavaScript in 2023
addyosmani
46
7k
Transcript
generated by Stable Diffusion XL v1.0 2023 5 (WBS) 2023
5 — 2023-12 – p.1/16
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 5 — 2023-12 – p.2/16
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 5 — 2023-12 – p.3/16
RStudio Git ( ) 2 2023 5 — 2023-12 –
p.4/16
RStudio Git ( ) RStudio Git Git ( GPL) GitHub
Git ( ) RStudio pull 2023 5 — 2023-12 – p.5/16
Git RStudio Git (OS ) Linux : ( OK) macOS
: Xcode (Apple ) Xcode AppStore https://apps.apple.com/jp/app/xcode/id497799835 Windows : https://gitforwindows.org OK https://github.com/ks91/cda-demo Git 2023 5 — 2023-12 – p.6/16
(scatter plot) 2 x y ( ) (◦ ) plot
(verb): mark out or allocate (points) on a graph cda-demo “ .R” 1 2023 5 — 2023-12 – p.7/16
“ .txt” 1 1 <- read.table(" .txt", header=T) plot( 1,
xlim=c(0, 100), ylim=c(0, 100), xlab=" ", ylab=" ", main=" ") : 2023 5 — 2023-12 – p.8/16
0 20 40 60 80 100 0 20 40 60
80 100 ṇࡢ┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ ᩘᏛࡢヨ㦂⤖ᯝ 2023 5 — 2023-12 – p.9/16
“ .txt” 2 2 <- read.table(" .txt", header=T) plot( 2,
xlim=c(0, 20.0), ylim=c(13.0, 18.0), xlab=" ", ylab="100m ( )", main=" ") : 2023 5 — 2023-12 – p.10/16
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.11/16
1 2 plot( 1$ , 2$ , xlim=c(0, 100), ylim=c(13.0,
18.0), xlab=" ", ylab="100m ( )", main=" ") ( ) : 2023 5 — 2023-12 – p.12/16
0 20 40 60 80 100 13 14 15 16
17 18 ↓┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.13/16
3 1 2 3 3 <- data.frame( = 1$ ,
= 1$ , = 2$ , = 2$ ) plot( 3) 2 12 : plot 2023 5 — 2023-12 – p.14/16
ⱥㄒ 20 40 60 80 20 40 60 80 100
13 14 15 16 17 20 40 60 80 ᩘᏛ 㐠ື㛫 0 5 10 15 13 14 15 16 17 20 40 60 80 100 0 5 10 15 ▷㊥㞳 2023 5 — 2023-12 – p.15/16
2023 5 — 2023-12 – p.16/16