Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
散布図と相関 / Scatter Plots and Correlations
Search
Kenji Saito
PRO
December 09, 2023
Business
0
74
散布図と相関 / Scatter Plots and Correlations
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第5回で使用したスライドです。
Kenji Saito
PRO
December 09, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
FinTech 9-10 : Smart Contracts and Decentralized Finance
ks91
PRO
0
45
AI とデジタルトランスフォーメーション / AI and Digital Transformation
ks91
PRO
0
5
スマートコントラクトデザイン / Smart Contract Design
ks91
PRO
0
10
FinTech 7-8 : Blockchain
ks91
PRO
0
98
スマートコントラクトプログラミング / Smart Contract Programming
ks91
PRO
0
21
AI が研究する時代に、人はどう育つのか? — GAMER PAT にみる "シリアスゲームとしての知的訓練" / In an era where AI conducts research, how will humans develop? — "Intellectual Training as a Serious Game" Seen in GAMER PAT
ks91
PRO
0
65
FinTech 5-6 : The World of Apps
ks91
PRO
0
110
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
89
ブロックチェーン概論とインストール大会 / Introduction to Blockchain and Installation Workshop
ks91
PRO
0
11
Other Decks in Business
See All in Business
IRIAM Culture Deck
iriam
6
120k
Sales Marker Culture Book(English)
salesmarker
PRO
2
6.9k
T2 Company Deck
t2pr
0
1k
Goals 会社紹介資料
sazakitakashi
2
77k
데이터 분석가 없이 데이터 드리븐 디자인하기 | 2025년 11월 세미나
datarian
0
1k
【Progmat】デジタル資産の基礎知識(ST・SC動向俯瞰|2025年秋)
progmat
0
450
malna-recruiting-pitch
malna
0
11k
【27新卒フィールドセールス職採用】BuySell Technologies会社紹介資料
buyselltechnologies
0
250k
Vibe codingで作る、“忠実度の高い” プロトタイプのススメ
kakumaeda
1
140
Agentic AIを用いたサプライチェーン最適化
mickey_kubo
1
120
三井物産グループのデジタル証券〜ザ ロイヤルパークホテル 東京汐留〜再販売②徹底解説セミナースライド(20251008)
c0rp_mdm
PRO
1
460
TechnoKuRo LLC.
technokuro
0
520
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
KATA
mclloyd
PRO
32
15k
What's in a price? How to price your products and services
michaelherold
246
12k
Bash Introduction
62gerente
615
210k
Site-Speed That Sticks
csswizardry
13
940
For a Future-Friendly Web
brad_frost
180
10k
Making Projects Easy
brettharned
120
6.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Transcript
generated by Stable Diffusion XL v1.0 2023 5 (WBS) 2023
5 — 2023-12 – p.1/16
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 5 — 2023-12 – p.2/16
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 5 — 2023-12 – p.3/16
RStudio Git ( ) 2 2023 5 — 2023-12 –
p.4/16
RStudio Git ( ) RStudio Git Git ( GPL) GitHub
Git ( ) RStudio pull 2023 5 — 2023-12 – p.5/16
Git RStudio Git (OS ) Linux : ( OK) macOS
: Xcode (Apple ) Xcode AppStore https://apps.apple.com/jp/app/xcode/id497799835 Windows : https://gitforwindows.org OK https://github.com/ks91/cda-demo Git 2023 5 — 2023-12 – p.6/16
(scatter plot) 2 x y ( ) (◦ ) plot
(verb): mark out or allocate (points) on a graph cda-demo “ .R” 1 2023 5 — 2023-12 – p.7/16
“ .txt” 1 1 <- read.table(" .txt", header=T) plot( 1,
xlim=c(0, 100), ylim=c(0, 100), xlab=" ", ylab=" ", main=" ") : 2023 5 — 2023-12 – p.8/16
0 20 40 60 80 100 0 20 40 60
80 100 ṇࡢ┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ ᩘᏛࡢヨ㦂⤖ᯝ 2023 5 — 2023-12 – p.9/16
“ .txt” 2 2 <- read.table(" .txt", header=T) plot( 2,
xlim=c(0, 20.0), ylim=c(13.0, 18.0), xlab=" ", ylab="100m ( )", main=" ") : 2023 5 — 2023-12 – p.10/16
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.11/16
1 2 plot( 1$ , 2$ , xlim=c(0, 100), ylim=c(13.0,
18.0), xlab=" ", ylab="100m ( )", main=" ") ( ) : 2023 5 — 2023-12 – p.12/16
0 20 40 60 80 100 13 14 15 16
17 18 ↓┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.13/16
3 1 2 3 3 <- data.frame( = 1$ ,
= 1$ , = 2$ , = 2$ ) plot( 3) 2 12 : plot 2023 5 — 2023-12 – p.14/16
ⱥㄒ 20 40 60 80 20 40 60 80 100
13 14 15 16 17 20 40 60 80 ᩘᏛ 㐠ື㛫 0 5 10 15 13 14 15 16 17 20 40 60 80 100 0 5 10 15 ▷㊥㞳 2023 5 — 2023-12 – p.15/16
2023 5 — 2023-12 – p.16/16