Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
400
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
58
Metadata Management in Distributed File Systems
kuenishi
2
530
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
420
Apache Ozone behind Simulation and AI Industries
kuenishi
0
420
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.3k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
760
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.5k
Other Decks in Technology
See All in Technology
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
170
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
510
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
130
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
12k
ActiveJobUpdates
igaiga
1
320
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.4k
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
860
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
260
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
180
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
7
3.9k
Featured
See All Featured
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
94k
Utilizing Notion as your number one productivity tool
mfonobong
2
190
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Building Applications with DynamoDB
mza
96
6.8k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
It's Worth the Effort
3n
187
29k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
200
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
74
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736