Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
390
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
48
Metadata Management in Distributed File Systems
kuenishi
2
520
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
410
Apache Ozone behind Simulation and AI Industries
kuenishi
0
400
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.2k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.2k
Introducing Retz and how to develop practical frameworks
kuenishi
3
750
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.4k
Other Decks in Technology
See All in Technology
コンパウンド組織のCRE #cre_meetup
layerx
PRO
1
290
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
150
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
AI時代の発信活動 ~技術者として認知してもらうための発信法~ / 20251028 Masaki Okuda
shift_evolve
PRO
1
120
データとAIで明らかになる、私たちの課題 ~Snowflake MCP,Salesforce MCPに触れて~ / Data and AI Insights
kaonavi
0
130
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
300
AI駆動で進める依存ライブラリ更新 ─ Vue プロジェクトの品質向上と開発スピード改善の実践録
sayn0
1
340
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
530
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
230
20251024_TROCCO/COMETAアップデート紹介といくつかデモもやります!_#p_UG 東京:データ活用が進む組織の作り方
soysoysoyb
0
130
GraphRAG グラフDBを使ったLLM生成(自作漫画DBを用いた具体例を用いて)
seaturt1e
1
160
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
170
Featured
See All Featured
Site-Speed That Sticks
csswizardry
13
930
BBQ
matthewcrist
89
9.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Designing for humans not robots
tammielis
254
26k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
640
How to Think Like a Performance Engineer
csswizardry
27
2.1k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
140
Bash Introduction
62gerente
615
210k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736