Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
380
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
30
Metadata Management in Distributed File Systems
kuenishi
2
510
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
400
Apache Ozone behind Simulation and AI Industries
kuenishi
0
370
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.2k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.1k
Introducing Retz and how to develop practical frameworks
kuenishi
3
730
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.4k
Other Decks in Technology
See All in Technology
Claude Code に プロジェクト管理やらせたみた
unson
8
4.9k
AWS CDK 開発を成功に導くトラブルシューティングガイド
wandora58
3
170
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
1
450
American airlines ®️ USA Contact Numbers: Complete 2025 Support Guide
airhelpsupport
0
390
サイバーエージェントグループのSRE10年の歩みとAI時代の生存戦略
shotatsuge
4
830
セキュアな社内Dify運用と外部連携の両立 ~AIによるAPIリスク評価~
zozotech
PRO
0
100
ソフトウェアQAがハードウェアの人になったの
mineo_matsuya
3
110
【LT会登壇資料】TROCCO新コネクタ「スマレジ」を活用した直営店データの分析
kazari0425
1
170
OpenTelemetryセマンティック規約の恩恵とMackerel APMにおける活用例 / SRE NEXT 2025
mackerelio
3
1.6k
SRE不在の開発チームが障害対応と 向き合った100日間 / 100 days dealing with issues without SREs
shin1988
2
1.5k
SEQUENCE object comparison - db tech showcase 2025 LT2
nori_shinoda
0
280
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
210
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
336
57k
Code Review Best Practice
trishagee
69
19k
BBQ
matthewcrist
89
9.7k
How STYLIGHT went responsive
nonsquared
100
5.6k
Building Adaptive Systems
keathley
43
2.7k
Gamification - CAS2011
davidbonilla
81
5.4k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Agile that works and the tools we love
rasmusluckow
329
21k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
980
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736