Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Jepsen Introduction LT
Search
UENISHI Kota
May 13, 2015
Technology
2
340
Jepsen Introduction LT
Jepsenの紹介LT
UENISHI Kota
May 13, 2015
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Metadata Management in Distributed File Systems
kuenishi
2
470
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
330
Apache Ozone behind Simulation and AI Industries
kuenishi
0
290
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.1k
A Few Ways to Accelerate Deep Learning
kuenishi
0
990
Introducing Retz
kuenishi
5
1.1k
Introducing Retz and how to develop practical frameworks
kuenishi
3
670
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.3k
Mesos Frameworkの作り方 (How to Make Mesos Framework)
kuenishi
7
2.3k
Other Decks in Technology
See All in Technology
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
The Rise of LLMOps
asei
7
1.7k
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
OTelCol_TailSampling_and_SpanMetrics
gumamon
1
190
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
140
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
420
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
2
330
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
150
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.2k
Zennのパフォーマンスモニタリングでやっていること
ryosukeigarashi
0
150
飲食店データの分析事例とそれを支えるデータ基盤
kimujun
0
150
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Code Review Best Practice
trishagee
64
17k
Building Applications with DynamoDB
mza
90
6.1k
Embracing the Ebb and Flow
colly
84
4.5k
Teambox: Starting and Learning
jrom
133
8.8k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Scaling GitHub
holman
458
140k
We Have a Design System, Now What?
morganepeng
50
7.2k
Transcript
2015/5/13 Dwango Internal Erlang/OTP study group, LT Kota UENISHI /
@kuenishi JEPSEN “CALL ME MAYBE”
“Call Me Maybe” WHAT EVEN IS JEPSEN?
Who plays a song “Call Me Maybe” A NAME OF
A SINGER
That can test many system with replication ALSO, A PARTITION
TOLERANCE TEST TOOL
IT HAS TESTED … • PostgreSQL • Redis (Sentinel, redux)
• MongoDB • Riak • ZooKeeper • NuoDB • Kafka • Cassandra • RabbitMQ • etcd and Consul • Elasticsearch • Aerospike (New!)
AND FOUND DATA LOSS ISSUE OF … • Redis (Sentinel,
redux) • MongoDB • Kafka • Cassandra • RabbitMQ • etcd • Elasticsearch • Aerospike
BOXES AND LINES n1 jepsen n2 n3 n4 n5
is implemented in Clojure TECHNICALLY JEPSEN .. • Emulates network
partition • By cutting network between virtual machines • While Jepsen concurrently continues writing data, • And finally verifies any writes are not lost
WHY PARTITION TOLERANCE IS IMPORTANT AND DIFFICULT?
• In the beginning was the failure and asynchrony •
Replication and Consensus next • Failover and recovery / Membership Change mess things • Implementation and runtime is complexed
• for x=1….n • list = get(x) • write(x, [a,
list]) • get(x) • => [1…n] ͱͳ͍ͬͯΕ linearizable
REFERENCES • C.R.Jepsen “Call Me Maybe” • Jepsen blog post
series • github.com/aphyr/jepsen • Kyle Kingsbury: @aphyr (sometimes NSFW) • “The Network Is Reliable” • https://queue.acm.org/detail.cfm?id=2655736