Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アノテーションのバイアス排除に関する2020年代の研究動向
Search
kuri8ive
July 20, 2022
Research
1
1.2k
アノテーションのバイアス排除に関する2020年代の研究動向
社内LT会で発表した資料です。
内容はアノテーションのバイアス排除に関する近年の研究をざっくり紹介したものです。
kuri8ive
July 20, 2022
Tweet
Share
More Decks by kuri8ive
See All by kuri8ive
"多様な推薦"はユーザーの目にどう映るか
kuri8ive
3
380
LLMとの共同執筆は文章の多様性を減らすか?
kuri8ive
4
830
推薦結果への説明付加はいつどんなものが嬉しいか
kuri8ive
2
300
広告設定をより制御できるようになるとユーザーはどう反応しどう感じるか
kuri8ive
1
340
説明の偏り・見せ方が推薦結果の選択にどう影響するか
kuri8ive
3
960
正確な推薦は無条件に信頼できるか?
kuri8ive
3
1.1k
セレンディピティはトキメキの夢を見せるか?
kuri8ive
1
1.4k
"2 - 4時は見られません"を深掘りしてみる
kuri8ive
0
200
論文紹介/5 papers at 75. Bias and Ethics (CHI 2022)
kuri8ive
0
410
Other Decks in Research
See All in Research
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
7
2.9k
CVPR2024論文紹介:Segmentation
hinako0123
0
130
JMED-LLM: 日本語医療LLM評価データセットの公開
fta98
4
1k
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
540
LLM時代の半導体・集積回路
kentaroy47
1
410
湯村研究室の紹介2024 / yumulab2024
yumulab
0
140
医療分野におけるLLMの現状と応用可能性について
kento1109
11
3.2k
20240725異文化融合研究セミナーiSeminar
tadook
0
130
SSII2024 [OS2] 大規模言語モデルと基盤モデルの射程
ssii
PRO
0
480
Matching 2D Images in 3D: Metric Relative Pose from Metric Correspondences
sgk
1
280
RCEへの近道
kawakatz
1
770
「Goトレ」のご紹介
smartfukushilab1
0
540
Featured
See All Featured
Debugging Ruby Performance
tmm1
73
12k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Raft: Consensus for Rubyists
vanstee
136
6.6k
How GitHub Uses GitHub to Build GitHub
holman
473
290k
From Idea to $5000 a Month in 5 Months
shpigford
380
46k
Scaling GitHub
holman
458
140k
Why Our Code Smells
bkeepers
PRO
334
57k
The World Runs on Bad Software
bkeepers
PRO
65
11k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
42
6.5k
Building Adaptive Systems
keathley
37
2.1k
Practical Orchestrator
shlominoach
185
10k
Docker and Python
trallard
40
3k
Transcript
アノテーションのバイアス排除に関する 2020年代の研究動向 栗本真太郎(@kuri8ive) 2022年7月20日 2022年夏の Official Account 開発室 LT大会 Ad
Data Science Team
2/19 「いかにバイアスを排除し アノテーションの質を高めるか?」に 関連する近年の研究をざっくり紹介するもの これはなに
バイアス排除の難しさを感じさせる研究群 CSCW'20, SIGIR'20, HCOMP'20, ICCV'21, FaccT'22, NAACL'22
4/19 えらい人の都合 in データ 多くの研究はアノテーターの主観に焦点を当てているが本当にそれが問題? → 上位にいる他者の関心、価値、優先順位に深く影響されていた Between Subjectivity and
Imposition: Power Dynamics in Data Annotation for Computer Vision (CSCW'20)
5/19 素人でも玄人並みのアノテーションは可能? 政治的発言の誤報識別タスクで概ね専門家と類似したアノテーション結果 また、ワーカーのグループ化が有用であることも示唆 → ただし、暗黙的な政治的志向が真偽の判断品質に影響するので注意 (明示的な政治スタンスとは関係なく) Can The Crowd
Identify Misinformation Objectively? The Effects of Judgment Scale and Assessor's Background (SIGIR'20)
6/19 違う視点を知ればバイアスは軽減できる? 違う視点を持つ人と一緒にアノテーションをしてもあまり変化はなし → 単に違う視点を知るだけではバイアス軽減には至らない Does Exposure to Diverse Perspectives
Mitigate Biases in Crowdwork? An Explorative Study (HCOMP'20)
7/19 肌の色が違えばいろいろ違ったものに 画像に存在するバイアスを「肌の色が明るい人 or 暗い人」で調査 → キャプションの正確さ、感情や単語の選択に違い また、キャプションシステムが最新かどうかで大きな差 Understanding and
Evaluating Racial Biases in Image Captioning (ICCV'21)
8/19 うーんたぶんこれは真実かな(N回目) 公開されているクラウドソーシングデータの系統的探索分析を実施 → 認知バイアスのほか、科学に対する信念が影響する可能性を示唆 また、一般的に真実性を過大評価する傾向 The Effects of Crowd
Worker Biases in Fact-Checking Tasks (FaccT'22)
9/19 言論の有害性の評価において アノテーターのアイデンティティや信条が強く影響 → 特に、保守的だったり人種差別的信念のスコアが高いアノテーターは 黒人へのヘイトスピーチを無害と評価する一方、アフリカ英語を有害と評価 "標準"じゃないのは有害? Annotators with Attitudes:
How Annotator Beliefs And Identities Bias Toxic Language Detection (NAACL'22)
バイアス排除に挑戦している研究群 VLDB'20, CVPR'21, IJCAI'21, NerIPS'21, CHIIR'22, IJCV'22, CHI'22, ICML'22
11/19 MCMCに基づく類似アイテムの混同検出手法を提案し 品質が改善されることを実験で示した → 単純な警告であっても早期に混同のリスクを警告することで 大幅に改善できることも示した いつ頭こんがらがったか教えて〜 Detecting and Preventing
Confused Labels in Crowdsourced Data (VLDB'20)
12/19 GANを用いて現実的な画像を生成したのち、潜在空間において摂動を与える → 各保護属性に対してバランスの取れた学習データを生成 GANで公平さの補正をかける Fair Attribute Classification Through Latent
Space De-Biasing (CVPR'21)
13/19 ラベルに加えて、アノテーターとタスクの値も同時にEMアルゴリズムで推論 → アノテーターが多い、確証バイアスが大きい場合などでより正確に推測 より確証バイアスを考慮した回答統合 Accounting for Confirmation Bias in
Crowdsourced Label Aggregation (IJCAI'21)
14/19 ラベルを定義する固有の属性とバイアスを引き起こす周辺属性を分離し、 多様な固有属性サンプルを合成 → 各アイテムの非本質的な部分で学習してしまうことを防ぐ 余分な情報をあえてつける Learning Debiased Representation via
Disentangled Feature Augmentation (NeurIPS'21)
15/19 Webページの質判断にどういった要因が影響するか → 時間帯や曜日が大きく影響することを示し 影響を軽減するための方策を指南 アノテーションに効いてくるバイオリズム The Crowd is Made
of People: Observations from Large-Scale Crowd Labelling (CHIIR'22)
16/19 (1)オブジェクト、(2)人物、(3)地理の3つの次元に沿って 潜在的な偏りを可視化するツールを開発 → 「ではどうすればよいか?」も提案し、早期のバイアス軽減へ どれくらい偏ってるか、見れば分かるよね? REVISE: A Tool for
Measuring and Mitigating Bias in Visual Datasets (IJCV'22)
17/19 逐次的な意思決定において、 アンカリングの影響を捕捉し提示アイテムを動的に決定する手法を提案 → リアルタイムでバイアスを軽減しながらの評価収集を実現 さっき見たものの影響をどけたい AI-Moderated Decision-Making: Capturing and
Balancing Anchoring Bias in Sequential Decision Tasks (CHI'22)
18/19 画像内の顔に難読化処理を施す → 人種等の(不必要な)影響を軽減しつつ、 難読化済みデータで学習したモデルの性能低下は1%以下程度に抑えられた XX人がいるから〇〇を避けるために A Study of Face
Obfuscation in ImageNet (ICML'22)
完全じゃなくともバイアスを踏まえたデータ収集をやっていき https://alu.jp/series/僕たちがやりました/crop/HVt9jvtSrrrYDT8TbZ27