Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Object Detection and Classification
Search
Leszek Rybicki
February 16, 2017
Research
2
15k
Food Image Object Detection and Classification
Part 1: Detection
Leszek Rybicki
February 16, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
130
How to Patch Image Classifiers
lunardog
0
2.2k
Towards Realistic Predictors - EN
lunardog
0
2.1k
Towards Realistic Predictors
lunardog
1
2.2k
Deep Learning Hot Dog Detector
lunardog
0
270
Finding beans in burgers: paper reading notes
lunardog
0
1.6k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
380
Other Decks in Research
See All in Research
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
850
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
110
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
0
260
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
220
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
3
220
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
150
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
CVPR2025論文紹介:Unboxed
murakawatakuya
0
150
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
770
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
170
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
190
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
Featured
See All Featured
Designing for Performance
lara
610
69k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
The Cult of Friendly URLs
andyhume
79
6.6k
A Tale of Four Properties
chriscoyier
160
23k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
BBQ
matthewcrist
89
9.8k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Embracing the Ebb and Flow
colly
87
4.8k
Transcript
Food Image Object Detection and Classification Challenges and Solutions
Part 1: Detection
自己紹介 • リビツキ レシェック • ポーランド出身 • 2016~ クックパッド • github:
lunardog
Warning! This presentation contains images that may cause severe drooling
and stomach grumbling. @cookpad
History 歴史
ImageNet KWWSLPDJHQHWRUJ
ImageNet Large Scale Visual Recognition Competition KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2010 task Classification )RUHDFKLPDJHDOJRULWKPV ZLOOSURGXFHDOLVWRIDWPRVW REMHFWFDWHJRULHVLQWKH GHVFHQGLQJRUGHURI FRQILGHQFH KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2011 tasks 1. Classification 2. *Classification with localization *tester
task
KWWSFVQVWDQIRUGHGXV\OODEXVKWPO Classification + Localization
ILSVRC 2012 tasks 1. Classification 2. Classification with localization 3.
Fine-grained classification
Fine-grained classification KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
AlexNet ,PDJHQHWFODVVLILFDWLRQZLWKGHHSFRQYROXWLRQDOQHXUDOQHWZRUNV $.UL]KHYVN\,6XWVNHYHU*(+LQWRQ$GYDQFHVLQQHXUDOLQIRUPDWLRQ SURFHVVLQJV\VWHPV
ILSVRC 2013 tasks 1. Detection 2. Classification 3. Classification with
localization
ILSVRC 2014 tasks 1. Detection 2. Classification 3. Classification with
localization
Object Detection KWWSFVQVWDQIRUGHGXV\OODEXVKWPO
Deep Learning KWWSVGHYEORJVQYLGLDFRP
ILSVRC 2015 tasks 1. Object detection 2. Object localization 3.
*Object detection from video 4. *Scene classification
ILSVRC 2016 tasks 1. Object localization 2. Object detection 3.
Object detection from video 4. Scene classification 5. Scene parsing
Cookpad 2016
画像データセット 1997年~ レシピ数:国内約260万 + 国外 + つくれぽ + 手順写真 17言語、60カ国
※数字は2017年02月時点のものです
画像解析の研究関心 • これは料理ですか? • どの料理ですか? • 料理はどこですか? • 。。。 Part
2
Where is the food? 料理はどこですか?
ゴール )LQGIRRGLQWKHLPDJHGUDZ DERXQGLQJER[DURXQGWKH IRRGLWHPLQFOXGLQJWKH GLVKLIYLVLEOH
,IWKHUHDUHPXOWLSOHLWHPV GUDZDERXQGLQJER[ DURXQGHDFKRQH ゴール
ground truth bounding box > 0.9 We count it as
a positive detection if Intersection over Union ratio is greater than 0.9. ƴ
QXPEHURIWUXHSRVLWLYHV QXPEHURIJURXQGWUXWKER[HV ƴ ƴ ƴ QXPEHURIWUXHSRVLWLYHV QXPEHURIJHQHUDWHGER[HV 再現率 (precision) (recall)
ƴ ƴ
Methods
1. Build a classifier 2. Pick Regions of Interest 3.
Run classifier on each region 4. Remove duplicate detections IDEA
Fast, Faster R-CNN 5LFKIHDWXUHKLHUDUFKLHVIRUDFFXUDWHREMHFWGHWHFWLRQDQGVHPDQWLFVHJPHQWDWLRQ 5RVV*LUVKLFN-HII'RQDKXH7UHYRU'DUUHOO-LWHQGUD0DOLN )DVWHU5&117RZDUGV5HDO7LPH2EMHFW'HWHFWLRQZLWK5HJLRQ3URSRVDO1HWZRUNV 6KDRTLQJ5HQ.DLPLQJ+H5RVV*LUVKLFN-LDQ6XQ
)DVW5&11 5RVV*LUVKLFN
問題 1. Computational cost 2. Context is important 3. ...but
context can be confusing. KDQG IRRG JUDVV IRRG KWWSSL[DED\FRP
Single Shot Detector 66'6LQJOH6KRW0XOWL%R['HWHFWRU :HL/LX'UDJRPLU$QJXHORY'XPLWUX(UKDQ&KULVWLDQ6]HJHG\ 6FRWW5HHG&KHQJ<DQJ)X$OH[DQGHU&%HUJ
Either The Least Or Most Employable Person Ever 7KH+XIILQJWRQ3RVW JLWKXEFRPSMUHGGLH
SMUHGGLHFRPGDUNQHW ZZZNDJJOHFRPSMUHGGLH Joseph Redmon
You Only Look Once <RX2QO\/RRN2QFH8QLILHG 5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV *LUVKLFN$OL)DUKDGL 'HF
<2/2%HWWHU)DVWHU 6WURQJHU -RVHSK5HGPRQ$OL)DUKDGL
<RX2QO\/RRN2QFH8QLILHG5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV*LUVKLFN$OL)DUKDGL YOLO in Context
None