Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI駆動の自動テスト生成
Search
Takashi Machinaga
May 15, 2025
Technology
1
94
AI駆動の自動テスト生成
AI ×フロントエンド開発のリアル(2025-05-15)
Takashi Machinaga
May 15, 2025
Tweet
Share
More Decks by Takashi Machinaga
See All by Takashi Machinaga
事業モメンタムを生み出すプロダクト開発
macchiitaka
1
160
What is Standard Schema?
macchiitaka
0
74
Other Decks in Technology
See All in Technology
LT:組込み屋さんのオシロが壊れた!
windy_pon
0
470
大手企業のAIツール導入の壁を越えて:サイバーエージェントのCursor活用戦略
gunta
19
5.4k
やさしいClaude Code入門
minorun365
PRO
32
25k
ソフトウェアテストのAI活用_ver1.10
fumisuke
0
240
Houtou.pm #1
papix
0
670
うちの会社の評判は?SNSの投稿分析にAIを使ってみた
doumae
0
270
“⾞が通れるほど⼤きな”セキュリティーホールを抑えながらログインしたい
taiseiue
0
160
データ戦略部門 紹介資料
sansan33
PRO
1
3.1k
從開發到架構設計的可觀測性實踐
philipz
0
120
Devin&Cursor、それぞれの「本質」から導く最適ユースケース戦略
empitsu
8
2.5k
libsyncrpcってなに?
uhyo
0
150
コードの考古学 〜労務システムから発掘した成長の糧〜
kenta_smarthr
1
1.2k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
183
22k
Why Our Code Smells
bkeepers
PRO
336
57k
Writing Fast Ruby
sferik
628
61k
Designing for humans not robots
tammielis
253
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Fontdeck: Realign not Redesign
paulrobertlloyd
84
5.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Designing for Performance
lara
608
69k
For a Future-Friendly Web
brad_frost
178
9.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
750
Transcript
AI駆動の⾃動テスト⽣成 2025-05-15 株式会社IVRy(アイブリー) 町永 隆 @macchiitaka
⾃⼰紹介 • @macchiitaka • 2024年8⽉ IVRy に⼊社 • 主にWebフロントエンドの機能開発 町永
隆(Takashi Machinaga) 2 ソフトウェアエンジニア
IVRyとは?
電話⾃動応答サービスIVRy 電話AI SaaS IVRy(アイブリー)は、 ⽉額2,980円からカスタム電話をカンタンに作成できるサービス。 全ての電話業務を誰でもすぐにAIを使って効率化できます
テストを AI に⽣成してほしい • ⾃社のプロダクト開発の中でのトライ&エラーの話 • 初期からある Web フロントエンドのリポジトリ •
ビジネス優先で開発してきた • リファクタリングをしたい • しかしテストがほぼない • リファクタリングは、プログラムの動作を 変えずに、内部の構造を整理‧改善する作業 • つまりテストとセット • Copilot & Cursor & Devin
静的解析
• AI のため…ではなく元々は⾃分たちのコード品質向上のために強化していた • AI Agent と静的解析の親和性が⾼い • AI の制御にも活⽤できる
• AI Agent は暴⾛する • 適切なフィードバックを与えないと明後⽇の⽅向にコードを変更する • ガードレール(=ルール)が必要 • 確率で動く AI に対して、従来のルールベースの静的解析ツールで制御 静的解析
静的解析 1. TypeScript a. tsconfig/bases 2. ESLint a. bulk suppressions
(v9.24.0) i. AI に disable コメントを真似させない b. スタイルに関するルールも有効にする i. 特に Auto Fixable なルールは積極的に有効に ii. 表記の統⼀(prd, prod, pro…)
ルールの変更も AI にやってもらった
プロンプトを頑張らない • 最初は Cursor で⼿元で実⾏ • 簡単なプロンプトで完了すればラッキー🎉🎉🎉 • だいたいはうまくいかない •
テスト⽣成の「最初」と「最後」に介⼊する • 「最初」に介⼊するパターン ◦ Pull Request やコミット途中まで作成して、続きの作業をしてもらう ◦ = リファレンス実装 ◦ ⾃然⾔語でプロンプトを書くよりも簡単 & ⾼精度
プロンプトを頑張らない • 「最後」に介⼊するパターン ◦ ⼈間相⼿のアンチパターンが AI なら許される ◦ 「あとは俺がやる」 ◦
AI と仕事をしているといままで PR は以下にコード以外に思考を回してい たか気付かされる ◦ 癖になって⼈間相⼿にやらないように気をつけよう • 次回以降は成功した Pull Request を参照させる ◦ 精度が上がるまでは Cursor ◦ 精度が上がってからは Devin で並列実⾏
プロンプトを頑張らないコツ
無限にお⾦があったら • なぜプロンプトを頑張りたくなるのか? ◦ 従量課⾦だから成功率を上げたくなる ◦ 定額だったら使わないと損 ◦ もし5000兆円あったら…? •
⽯油王の気持ちで AI を使う • 同じプロンプトで複数回実⾏する ◦ 当たるまで繰り返す(ガチャ) • ちなみに IVRy 社内でもっとも Devin を使った ◦ マージ率ももっとも⾼かった
「あなたはアラブの⽯油王です」
ユニットテスト
テスト環境 • Vitest ◦ jsdom + Testing Library ◦ Browser
Mode ▪ Chromium ▪ Firefox ▪ WebKit
悩み①:モックサーバー • vi.spyOn、vi.mock を使いたがる ◦ 関数、モジュールレベルをモックすると、実装に依存したテストになる ◦ msw を使ったモックサーバーを利⽤してほしい ◦
しかし、このモックサーバーの⽣成精度が低い • ⾃動⽣成された API クライアントをリポジトリに含めた ◦ OpenAPI を利⽤したスキーマ駆動開発を採⽤している ◦ ⾃動⽣成ファイルはリポジトリから除外していた ◦ これと⽣成元の OpenAPI の定義ファイルを含めた ◦ モックサーバーの⽣成精度が向上 🎉🎉
悩み②:テストケース • 実装に依存したテストを⽣成しがち ◦ 実装に依存すると変更に弱いテストになる ◦ ユーザーが操作するようにテストしたい • it.todo でテストケースだけ作成する
◦ テストケース作成と⾃動テスト実装を別ステップにする ◦ テストファイルは縦に⻑くなりがち ▪ テストケースだけなら出⼒が速い ◦ 場合によっては最初の数ケースをエンジニアが定義する(最初に介⼊)
悩み②:テストケース • ゼロからテストケースを作成するより圧倒的に楽 • AI が⾃ら定義したテストケースは⾼精度で書ける • ただし、エンジニアが介⼊したテストケースのミス率は相対的に⾼い • ⽣成後、テストカバレッジを渡してテストを網羅的に書かせる
• ただしカバレッジが⾼い=良いテストケースではない • 品質は⼈間が担保する
• リファクタリング前に捨てる前提のテストを作成する • テストがグリーンであればいい • テスト品質は問わない ◦ 実装に依存したテストでもいい • 既存の機能が変わっていないことを(多少なりとも)保証してもらう
AI 特有のテスト
現在地点
ジュニアエンジニアとのペアプロ • ⼈間にとって簡単なタスクは AI にとっても簡単 • ⼈間にとって難しいタスクは AI にとっても難しい •
簡単だけど⼿数な必要な作業を AI にやってほしい • どれだけ構造化されたコードベースにできるか • どれだけ簡単なタスクに分割できるか • フロントエンドは⽐較的は細かい作業の連続 • ジュニアエンジニアとのペアプロしてきたメソッドが役に⽴った • 副作⽤として Good First Issue が枯渇する
現時点の付き合い⽅ • ゴールを定めにそこにどう導くか • 宣⾔的 UI と同じ • AI は意思決定をしてくれない
• 考えることまで任せない • 最終的な完成物の責任は⾃分にある
https://ivry-jp.notion.site/IVRy-127eea80adae801397a4e4d7ea74e291