Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「パーソナリティデータ」から見えてくる世界
Search
makaishi2
May 11, 2022
Business
1
640
「パーソナリティデータ」から見えてくる世界
水曜ワトソンカフェ 「パーソナリティデータ」から見えてくる世界 那須川さん発表資料
makaishi2
May 11, 2022
Tweet
Share
More Decks by makaishi2
See All by makaishi2
Watsonの見果てぬ夢は大規模言語モデルで花開く
makaishi2
1
480
AI・DS領域を学習したい方に向けて
makaishi2
2
960
新生IBM PI誕生秘話
makaishi2
0
540
性格推定技術の活用を一緒に考えませんか?
makaishi2
2
770
最短コースでPyTorchとディープラーニングを征服するためのツボ
makaishi2
13
3.2k
データサイエンティストに必要なスキルと、分析プロジェクトを成功させるための上流工程のポイント
makaishi2
4
650
SPSS Modeler Flow で儲かるAIをつくる(ワトソンカフェ版)
makaishi2
2
740
SPSS Modeler Flow で儲かるAIをつくる
makaishi2
1
1.6k
Watson Studio / AutoAI ご紹介資料
makaishi2
1
1.1k
Other Decks in Business
See All in Business
いま、データに必要な解像度
hik0107
33
13k
_HP掲載用_株式会社CloudSoft会社説明資料.pdf
csmatsushita
0
1.4k
re:Infrastructure_for the NextGen AI/ML and Beyond
ichichi
0
150
産業用自家消費型太陽光80kW 投資対効果(ROI)・投資回収期間シミュレーション結果(エネがえるBiz診断レポートサンプル)
satoru_higuchi
PRO
0
340
ログラス会社紹介資料 新卒採用 ビジネス職[経営幹部候補]/ Loglass Company Deck
loglass2019
0
1.4k
仮説のマップ・ループ・リープ
tumada
PRO
11
3.9k
Cobe Associe: Who we are? /コンサル・市場調査・人材紹介のCobe Associe
nozomi
6
18k
東京都教育委員会 情報共有掲示板
tokyo_metropolitan_gov_digital_hr
0
280
デジタルで創れ!未来の東京消防庁
tokyo_metropolitan_gov_digital_hr
1
310
タケウチグループRecruit
takeuchigroup
0
2k
サスメド株式会社 Culture Deck
susmed
0
37k
GA technologies Co.,Ltd. Corporate Story
gatechnologies
2
910
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Statistics for Hackers
jakevdp
796
220k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Making Projects Easy
brettharned
116
5.9k
Fireside Chat
paigeccino
34
3.1k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Optimizing for Happiness
mojombo
376
70k
Building Applications with DynamoDB
mza
91
6.1k
Transcript
「パーソナリティデータ」から見えてくる世界 日本アイ・ビー・エム株式会社東京基礎研究所 那須川 哲哉 2022年5月11日 © 2022 IBM Corporation
自己紹介: 那須川哲哉 1989~ 日本アイ・ビー・エム株式会社に入社。東京基礎研究所に配属されて以来、一貫して自然言語処理関連の研究に従事。 応用面では、機械翻訳や電子図書館などを経て1997年からテキストマイニングに従事 2001~2002 IBM Thomas J. Watson
Research Center でアサイメント 2003~2004 アイ・ビー・エム ビジネスコンサルティングサービス株式会社に出向 2010~2011 慶應義塾大学大学院理工学研究科特別研究教授 (兼務) 2012~2016 静岡大学情報学部客員教授 (兼務) 2008~2010 人工知能学会理事(兼務) 2010~2012 電子情報通信学会 言語理解とコミュニケーション研究専門委員会委員長(兼務) • テキストマイニング(テキストアナリティクス)・シンポジウムを開始 • 2011年9月に第1回テキストマイニング・シンポジウムをIBMで開催 • 2021年9月の第18回まで10年間継続 2015~2017 情報処理学会理事(兼務) © 2022 IBM Corporation
Personality Insights (PI) 開発の背景: 人の性格特性の数値化 • ビッグファイブという標準的なモデルが存在し、Personalityが数値化可能に • 人の性格特性に関する科学的研究を実現 •
ビッグファイブ:人間の性格特性を5つの要素の組み合わせで記述 Openness to experience • 独創的・好奇心が強い・開放的・知的 vs. 着実・警戒心が強い Conscientiousness • 几帳面・手際が良い・勤勉・注意深い・まめ vs. 楽天的・不注意 Extraversion • 外向的・社交的・エネルギッシュ vs. 内向的・孤独志向・控えめ Agreeableness • 人当たり良い・温情あり・協調的 vs. 冷たい・不親切 Neuroticism • 繊細・神経質 vs. 情緒安定・自信家 © 2022 IBM Corporation
従来のビックファイブの測り方: 多数の質問文に対する自己申告内容から推定 9 © 2022 IBM Corporation
【性格関連研究から得られた知見】 子は親の性格を50%程度引き継ぐ Bouchard, Thomas J., and John C. Loehlin. "Genes,
evolution, and personality." Behavior genetics 31, no. 3 (2001): 243-273. © 2022 IBM Corporation
【性格関連研究から得られた知見】 言葉に性格が反映される • 文章の特徴に筆者の性格との関連性が見出せる • Mairesse, F., Walker, M.A., Mehl,
M.R., and Moore, R.K., “Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text.” In Journal of Artificial intelligence Research, 30: 457-500, 2007. © 2022 IBM Corporation
Watson Personality Insights : テキストから性格を推定する • テキストを入力 性格のサマリーと、Big5、欲求、価値観を出力 •
解析に必要なテキスト 少なくとも100単語、 理想的には3,000単語以上 • 現在対応している言語 日本語、英語、スペイン語、 アラビア語、韓国語 © 2022 IBM Corporation
Personality Insightsが推定すること:Personality(性格・個性) • ビックファイブ/OCEAN の5軸でのPersonalityの推定 • Openness to experience: 好奇心が強い・独創的
vs. 着実・警戒心が強い • Conscientiousness: 几帳面・勤勉・まめな人 vs. 楽天的・不注意 • Extraversion: 外向的・エネルギッシュ vs. 孤独を好む・控えめ • Agreeableness: 人当たりの良い・温情のある vs. 冷たい・不親切 • Neuroticism: 繊細・神経質 vs. 情緒安定な・自信家 • 各軸のさらに細かいfacetの推定も可能 • Openness to experience: 大胆性、芸術的関心度、情動性、想像力、思考力、現状打破 • Conscientiousness: 達成努力、注意深さ、忠実さ、秩序性、自制力、自己効力感 • Extraversion: 活発度、自己主張、明朗性、刺激希求性、友情、社交性 • Agreeableness: 利他主義、協調性、謙虚さ、強硬さ、共感度、信用度 • Neuroticism: 怒り、不安、憂うつ、利己的、自意識過剰、傷つきやすさ(低ストレス耐性) © 2022 IBM Corporation
Personality Insightsが推定すること: Needs(欲求) • Kevin FordのUniversal Needs Map に沿った分析 (欲求と社会的価値の関係)
• 個人の様々な習慣に関係 : ブランドの選択、商品の選択、職業の選択 • Challenge:挑戦 • Closeness:親密 • Curiosity:好奇心 • Excitement:興奮 • Harmony:調和 • Ideal:理想 • Liberty:自由主義 • Love:社会性 • Practicality:実用主義 • Self-(expression):自己表現 • Stability:安定性 • Structure:仕組 © 2022 IBM Corporation
Personality Insightsが推定すること: Value(価値観) • Schwartzの価値概説 (Schwartz Value Survey) に沿った分析 •
4つの上位価値と10個の価値によって構成される • 4つの上位価値 • Self-transcendence : 自己超越 • Conservation : 現状維持 • Self-enhancement : 自己増進 • Open to change : 変化許容性 • 10の価値 • 博識、善行、調和、伝統、秩序、 権勢、達成、快楽、刺激、自決 © 2022 IBM Corporation
日本語版Personality Insightsの実力 テキストからの筆者の性格特性の推定を 可能にする技術の効果・有効性 © 2022 IBM Corporation
Personality Insightsに対する誤解と偏見 • どれだけの根拠があるのだろうか • 精度は低いのではないか • 占いのようなものではないか © 2022
IBM Corporation
テキストから性格を推定する仕組み 1. ネット上でTwitterユーザに性格推定用質問文への回答を依頼 2. 質問文への回答から推定される性格と回答者のツイートを蓄積 3. ツイート・テキストにおける表現の割合と性格との相関を分析 表現の分布 ツイート・テキスト 性格情報
相関分析 © 2022 IBM Corporation
性格推定システムの性能(MAE)評価結果 言語 ビッグ・ファイブ のディメンション ビッグ・ファイブ のファセット ニーズ 価値 日本語 0.1
0.12 0.11 0.11 英語 0.12 0.12 0.11 0.11 アラビア語 0.09 0.12 0.11 0.1 韓国語 0.09 0.12 0.11 0.11 スペイン語 0.1 0.12 0.12 0.11 © 2022 IBM Corporation
Personality Insightsの実力: 何が凄いか • 社会心理学における従来の研究手法に革新的な変化を もたらし、 性格特性に関する研究を大幅に進展させられる可能性 があります © 2022
IBM Corporation
性格特性に関する従来型の研究手法 人の性格特性と健康アウトカムや寿命の関係を調べるために • 大規模なサンプリング • 調査参加の同意取得 • 多数の質問文に回答する形での性格検査 • 代表的な質問紙のNEO-PI-Rの場合、240項目の質問文に対して、
当てはまる度合いを5段階で回答 • 「私は心配性ではない。」、「大勢の人と一緒にいるのが好きだ。」など • ほかにも社会経済変数を含めた多数の調査項目への回答を求め、 • さらに同一人物を長年に渡って追跡 • 結果が出るまで、数十年という年月が必要 • 仮説の検証が容易でない © 2022 IBM Corporation
従来型の研究手法による 人の性格特性と寿命の関係の調査 • 調査1:米国で1921年に10歳前後の児童1528人を対象に調査開始。80年間追跡調査。 • 調査2:米国で1960年から国内の高校の5%を対象に追跡調査を実施。 • 2009年の最後の調査では、約2万7000人から情報を取得、追跡期間は平均48年 • 調査3:米国で数千人規模の調査対象者の約20年後の生死の情報
• 調査4:米国で20代から参加している300組の婚姻者に対する75年間にわたる研究 • 調査5:世界中8,900人以上の人々による20の個々の研究結果のまとめ 調1 調2調3 調4 調5 Openness 高 高 Conscientiousness 高 高 高 高 高 Extraversion (低) 高 高 Agreeableness 高 高 Neuroticism 低 低 低 © 2022 IBM Corporation
テキストから推定された筆者の性格特性と寿命 名前 寿 命 入力テキスト Opennes Conscientiousness Extraversion Agreeableness Neuroticism
樋口一葉 24 たけくらべ (1~4章) 0.94 0.32 0.03 0.82 0.85 石川啄木 26 一握の砂 (冒頭約2千5百文字) 0.99 0.37 0.36 0.93 0.9 中原中也 30 汚れちまった悲しみに 0.72 0.5 0.53 0.47 0.33 芥川龍之介 35 名言集 1 0.55 0.52 0.37 0.36 夏目漱石 49 道草 0.82 0.63 0.81 0.68 0.78 森鴎外 60 舞姫 (冒頭約6千文字) 1 0.55 0.48 0.94 0.95 ガンジー 79 Speech 1 0.74 0.03 0.01 0.6 渋沢栄一 91 Speech 0.97 0.87 0.82 0.52 0.47 松下幸之助 94 Speech 0.95 0.95 0.75 0.53 0.29 © 2022 IBM Corporation
性格特性と寿命の従来型を超える詳細調査 名前 寿 命 死因 orderliness (秩序性) self efficacy (自己効力感)
dutifulness (忠実さ) achievement striving (達成努力) cautiousness (注意深さ) self discipline (自制力) 樋口一葉 24 肺結核 0.91 0.91 0.66 0.39 0.34 0.33 石川啄木 26 肺結核 0.8 0.82 0.25 0.65 0.31 0.4 中原中也 30 結核性脳膜炎 0.59 0.7 0.48 0.7 0.29 0.68 芥川龍之介 35 服毒自殺 0.66 0.84 0.08 0.44 0.33 0.53 夏目漱石 49 胃潰瘍 0.91 0.94 0.07 0.89 0.12 0.38 森鴎外 60 萎縮腎 0.92 0.95 0.45 0.56 0.35 0.32 ガンジー 79 銃による暗殺 0.75 0.66 0.7 0.63 0.99 0.44 渋沢栄一 91 直腸がん 0.61 0.86 0.4 0.8 0.3 0.64 松下幸之助 94 肺がん 0.98 1 0.89 1 0.23 1 寿命とachievement strivingの相関係数が0.62 P値: 0.025 寿命とself disciplineの相関係数が0.53 P値:0.082 今後の調査を進める上での仮説となる可能性 © 2022 IBM Corporation
Personality Insightsの実力:専門家の評価 • 社会心理学の分野の実力者のサポートを得ています • 社会心理学系の学会でも高く評価されています • 人工知能学会から表彰されました • 社会心理学系の高名な先生方と
共著で論文を出しています • 査読論文も通しています 有識者から科学的学術的な有効性が認められています © 2022 IBM Corporation
PI日本語版開発時には社会心理学の専門家である 北村英哉教授のサポートを受けました https://www.anlp.jp/proceedings/annual_meeting/2016/pdf_dir/D7-1.pdf © 2022 IBM Corporation
日本語版Personality Insightsの可能性 テキストからの筆者の性格特性の推定を 可能にする技術の効果と応用可能性 © 2022 IBM Corporation
生活環境と性格特性推定値の関係 性格特性 変化具合 入院前後の差 突然入 院 予定入 院 突然入 院
予定入 院 Agreeableness 0.31 0.03 -0.01 -0.01 〔Conscientiousness〕 dutifulness (忠実さ) 0.28 0.02 0.02 0 〔Agreeableness〕 altruism (利他主義) 0.28 0 0.01 0 〔Agreeableness〕 sympathy (共感度) 0.23 -0.01 -0.01 -0.02 〔Needs〕 practicality (実用主義) -0.29 -0.06 -0.01 -0.02 〔Value〕 self enhancement (自己増進) -0.39 -0.03 0.03 0.02 突然入院してしまった人は、入院中の協調性が向上する 従来型の手法では調査困難な内容に関する知見 協調性:他人に対して思いやりを持ち協力的になる傾向 © 2022 IBM Corporation
熊本地震被災地におけるTwitterデータの分析 • 目的 • ・熊本震災の前後でPIのスコアに変化があるか調査 • 対象ユーザ • ・熊本震災のユーザ3000人 •
フィルター • ・十分な量をつぶやいているか • クロール方法 • ・ユーザあたり、震災前、震災中、震災後のツイートを収集 • 震災前 : 3月1日 ~ 4月13日 44日間 • 震災中 : 4月14日 ~ 4月23日 9日間 • 震災後 : 4月24日 ~ 6月7日 44日間 © 2022 IBM Corporation
熊本地震被災者の震災前後の性格推定値 低ストレス耐性:ストレスの多い状況に負けやすく、傷つきやすい傾向 © 2022 IBM Corporation
コロナ禍での性格推定値の変化の分析 • コロナ禍での自由記述テキストの収集 • IBM内 • Slackチャンネルを開設し投稿を依頼 • 2020年4月21日から2020年12月末までに合計2,820件 •
各投稿の平均文字数 • 中に含まれるURLの文字数も含めて141.1文字 • 首都圏にあるA大学 • 学生11名のコロナ日記の記述を依頼 • 2020年5月14日からの2ヶ月間で521件 • 各データの平均文字数は153.2文字 © 2022 IBM Corporation
コロナ禍での性格推定値の変化の分析 • 学生11名のコロナ日記の記述期間 • 厚生労働省のHP(https://www.mhlw.go.jp/stf/covid-19/kokunainohasseijoukyou.html )中の陽性者数 © 2022 IBM Corporation
コロナ禍における性格推定値の変化 Big5:conscientiousness(誠実性)のfacet: dutifulness(忠実性) • IBM • 学生 0 0.2 0.4
0.6 0.8 1 収束期 安定期 再拡大期 A B C D E F I J L 忠実性:規則や義務が不都合であってもまじめに守る傾向 © 2022 IBM Corporation
PIによるマッチング グループ形成試行 • 人と人の繋がりがより良くなれば、世界がより良くなる可能性 © 2022 IBM Corporation
親密な相手は性格特性が似ている傾向 Youyou, Wu, David Stillwell, H. Andrew Schwartz, and Michal
Kosinski. "Birds of a Feather Do Flock Together: Behavior-Based Personality- Assessment Method Reveals Personality Similarity Among Couples and Friends." Psychological science 28, no. 3 (2017): 276-284. © 2022 IBM Corporation
グループディスカッションのチーム形成試行 COSMOS Day (2019/11/5開催)ワークショップのチーム生成にPIを利用 1チーム最大4名,22チーム:下記3パターンを生成 性格が類似しているチーム,性格がバラバラのチーム,ランダムのチーム ワークショップ後,アンケートを実施して効果を検証 性格の距離が近い 人たちが多いス ポット
質問 1. このグループはとても盛り上がったと思う 2. グループのメンバーに同じように考えている人がいて共感した 3. グループのメンバーから違う考え方を知ることができて新鮮だった 4. このグループで是非また集まりたいと思った 5. このグループのメンバーと一緒ならエキサイティングな仕事ができるのではないかと思った 回答 1.強くそう思った 2.わりとそう思った 3.どちらでもない 4.あまりそう思わなかった 5.全くそうは思わなかった チーム平均回答が3よりも良かったチームの割合 性格がバラバラのチームのほう がややワークショップが盛り上 がった傾向が高かった.違う意 見をきけて盛り上がった? 逆に,性格が似ているから と言って,同じ考えの人ば かりのチームになるとは限 らない? ランダムにチーム生成するよりも, 性格特性を見てチームを生成したほ うが全項目において良い結果となっ た © 2022 IBM Corporation
まとめ • Personality Insightsは科学的な裏付のある技術です • パーソナリティデータの本格的な活用を可能にします • 人にはそれぞれ異なるパーソナリティーがあります • その違いを理解し尊重することが、
より良い社会の実現につながると考えます • パーソナリティーを考慮した新しいソリューションには 大きな可能性が考えられます • 個々人に対する、適切なサポート • 個々人にとって、より快適な環境の提供 • 個々人の能力を引き出しやすいグルーピング • など © 2022 IBM Corporation