Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
モバイルアプリで機械学習入門/introduction-to-machine-learning...
Search
marchin
December 09, 2021
Programming
0
490
モバイルアプリで機械学習入門/introduction-to-machine-learning-in-mobile-app
marchin
December 09, 2021
Tweet
Share
More Decks by marchin
See All by marchin
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
770
Amazon Athenaで気軽に始める データ分析/athena-data-analytics
marchin1989
0
590
WebAPI開発のためのOpenAPI入門/entry-open-api
marchin1989
1
1.3k
AWS Glueではじめるデータレイク
marchin1989
0
670
やさしく入門するOAuth2.0/easy-entry-oauth
marchin1989
8
2.4k
1時間半で克服するJavaScriptの非同期処理/async_javascript_kokufuku
marchin1989
2
1.5k
自動テストでモックするって、なにそれ?おいしいの?/what_is_mocking
marchin1989
1
1.2k
たぶんもう怖くないGit/maybe-not-afraid-of-git-anymore
marchin1989
2
2.6k
Other Decks in Programming
See All in Programming
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
110
AIコーディングエージェント(Gemini)
kondai24
0
220
WebRTC と Rust と8K 60fps
tnoho
2
2k
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
120
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.6k
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
310
開発に寄りそう自動テストの実現
goyoki
2
970
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
Integrating WordPress and Symfony
alexandresalome
0
150
マスタデータ問題、マイクロサービスでどう解くか
kts
0
100
ID管理機能開発の裏側 高速にSaaS連携を実現したチームのAI活用編
atzzcokek
0
230
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
390
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Scaling GitHub
holman
464
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Producing Creativity
orderedlist
PRO
348
40k
Unsuck your backbone
ammeep
671
58k
The World Runs on Bad Software
bkeepers
PRO
72
12k
RailsConf 2023
tenderlove
30
1.3k
GraphQLとの向き合い方2022年版
quramy
50
14k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
モバイルアプリで機械学習入門 ML Kitを使ったカメラアプリ実装
自己紹介 - 名前: 阿部 - 仕事: 主にAndroidエンジニア - 最近はサーバサイド Kotlinの仕事も始めました
- 趣味 - コーヒー、ビール、アニメ、ゲーム、読書、 etc... - Twitter: @marchin_1989
アジェンダ - on-device machine learning とは - MLKitの紹介 - MLKit
Face Detectionの機能の説明とデモンストレーション
on-device machine learning(on-device ML)とは - サーバ側ではなく、モバイルといったクライアントサイドで機械学習を行うこと
- 要件によるが以下のようなことを検討して決める。 クライアント(on-device)、サーバ、どちらでMLするか クライアント (on-device ML) リアルタイムに処理したい (ネットワーク通信の遅延がない ) データをサーバにあげたくない
ネットワークに繋げられない サーバ マシンパワーが必要 常に最新のモデルを使う必要がある 学習済みモデルを守りたい
on-device MLの例(スマホアプリ) - Google翻訳 - YouTube(AR Beauty Try-On) 出典: ITmedia
NEWS https://www.itmedia.co.jp/news/articles/1906/20/news069.html 出典: Google Play https://play.google.com/store/apps/details?id=com.google.android.apps.translate
on-device MLの機能を実装するためのフレームワーク - モバイル端末上で推論するためのフレー ムワーク。 - tensor flowで作ったモデルをtensor flow liteのモデルに変換できる
- Android, iOS, IoTデバイスで利用可能 - TensorFLow hubに学習済みのモデルが 提供されていたりする - よくある機械学習のユースケースと学習済み モデルをラップして、使いやすくしたもの。 - 機能によってはカスタムの TensorFlow Lite のモデルが使える。 - Android, iOSで利用可能
on-device MLをスクラッチで作成すると... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitを使うと... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
Face detectionの機能 - 顔認識 - 画像内のどこに顔があるのか認識(複数の顔も可能) - 顔のトラッキング - 一度認識した顔を、流れてくる画像に対してトラッキングしてくれる。
- ランドマーク - 顔の輪郭や、左目、右目、眉毛、口、鼻の位置などが画像内のどこにあるか - 分類 - 目が開いているのか、閉じているのか - 笑っているのか 出典: ML Kit Guides https://developers.google.com/ml-kit/vision/face-detection/face-detection-concepts
Face detectionの実装 - 依存モジュールを組み込む - 推論対象のイメージを渡す - 推論結果を処理する
Face detectionの実装
作ってみた(デモ) - 笑顔を認識して、自動で写真を撮ってくれるカメラアプリ(Android) - セルフィーでボタンが押しづらい - 全員笑ってる写真を撮りたい etc - Face
detectionを使う - https://developers.google.com/ml-kit/vision/face-detection
サンプルアプリの実装の概略 - CameraXを利用 - FaceDetectorがMLKitのクラス
TensorFlow Lite or MLKit? - まずはMLKitがおすすめ - 認識精度、パフォーマンスが悪いなど要件が合わなければ TensorFlow Liteを検討
- 自前でモデルを作ったとしても、推論結果をアプリで使いやすいように実装する必要がある - MLKitが認識できない例 - どの国の国旗か - どの会社のロゴか - その人が誰なのか - どのブランドの製品なのか - どの昆虫の種類なのか
on-device ML向けのモデルを作るには? - TensorFlowでモデルを作り、TensorFlow Liteに変換 - AutoML - TensorFlow Lite
Model Maker - 転移学習を用いて、 on-device向けにモデルを作成できるライブラリ。
on-device MLを組み込むときに迷ったら - On-Device Machine Learning - https://developers.google.com/learn/topics/on-device-ml - プラットフォームやユースケースを選ぶと、適切な方法を提示してくれる。
まとめ - まずはMLKitがおすすめ - やりたいことに応じて、自分でモデルを作るか検討しましょう