Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
モバイルアプリで機械学習入門/introduction-to-machine-learning...
Search
marchin
December 09, 2021
Programming
0
460
モバイルアプリで機械学習入門/introduction-to-machine-learning-in-mobile-app
marchin
December 09, 2021
Tweet
Share
More Decks by marchin
See All by marchin
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
730
Amazon Athenaで気軽に始める データ分析/athena-data-analytics
marchin1989
0
560
WebAPI開発のためのOpenAPI入門/entry-open-api
marchin1989
1
1.3k
AWS Glueではじめるデータレイク
marchin1989
0
630
やさしく入門するOAuth2.0/easy-entry-oauth
marchin1989
8
1.9k
1時間半で克服するJavaScriptの非同期処理/async_javascript_kokufuku
marchin1989
2
1.4k
自動テストでモックするって、なにそれ?おいしいの?/what_is_mocking
marchin1989
1
1.2k
たぶんもう怖くないGit/maybe-not-afraid-of-git-anymore
marchin1989
2
2.5k
Other Decks in Programming
See All in Programming
Workers を定期実行する方法は一つじゃない
rokuosan
0
130
Comparing decimals in Swift Testing
417_72ki
0
130
Streamlitで実現できるようになったこと、実現してくれたこと
ayumu_yamaguchi
2
240
DMMを支える決済基盤の技術的負債にどう立ち向かうか / Addressing Technical Debt in Payment Infrastructure
yoshiyoshifujii
4
670
[Codecon - 2025] Como não odiar seus testes
camilacampos
0
100
テスターからテストエンジニアへ ~新米テストエンジニアが歩んだ9ヶ月振り返り~
non0113
2
240
可変性を制する設計: 構造と振る舞いから考える概念モデリングとその実装
a_suenami
8
1k
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
110
GPUを計算資源として使おう!
primenumber
1
300
SwiftでMCPサーバーを作ろう!
giginet
PRO
2
210
構文解析器入門
ydah
7
1.9k
TypeScriptでDXを上げろ! Hono編
yusukebe
3
890
Featured
See All Featured
Producing Creativity
orderedlist
PRO
346
40k
KATA
mclloyd
31
14k
Designing for Performance
lara
610
69k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
860
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Facilitating Awesome Meetings
lara
54
6.5k
For a Future-Friendly Web
brad_frost
179
9.8k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.7k
Fireside Chat
paigeccino
37
3.5k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Transcript
モバイルアプリで機械学習入門 ML Kitを使ったカメラアプリ実装
自己紹介 - 名前: 阿部 - 仕事: 主にAndroidエンジニア - 最近はサーバサイド Kotlinの仕事も始めました
- 趣味 - コーヒー、ビール、アニメ、ゲーム、読書、 etc... - Twitter: @marchin_1989
アジェンダ - on-device machine learning とは - MLKitの紹介 - MLKit
Face Detectionの機能の説明とデモンストレーション
on-device machine learning(on-device ML)とは - サーバ側ではなく、モバイルといったクライアントサイドで機械学習を行うこと
- 要件によるが以下のようなことを検討して決める。 クライアント(on-device)、サーバ、どちらでMLするか クライアント (on-device ML) リアルタイムに処理したい (ネットワーク通信の遅延がない ) データをサーバにあげたくない
ネットワークに繋げられない サーバ マシンパワーが必要 常に最新のモデルを使う必要がある 学習済みモデルを守りたい
on-device MLの例(スマホアプリ) - Google翻訳 - YouTube(AR Beauty Try-On) 出典: ITmedia
NEWS https://www.itmedia.co.jp/news/articles/1906/20/news069.html 出典: Google Play https://play.google.com/store/apps/details?id=com.google.android.apps.translate
on-device MLの機能を実装するためのフレームワーク - モバイル端末上で推論するためのフレー ムワーク。 - tensor flowで作ったモデルをtensor flow liteのモデルに変換できる
- Android, iOS, IoTデバイスで利用可能 - TensorFLow hubに学習済みのモデルが 提供されていたりする - よくある機械学習のユースケースと学習済み モデルをラップして、使いやすくしたもの。 - 機能によってはカスタムの TensorFlow Lite のモデルが使える。 - Android, iOSで利用可能
on-device MLをスクラッチで作成すると... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitを使うと... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
Face detectionの機能 - 顔認識 - 画像内のどこに顔があるのか認識(複数の顔も可能) - 顔のトラッキング - 一度認識した顔を、流れてくる画像に対してトラッキングしてくれる。
- ランドマーク - 顔の輪郭や、左目、右目、眉毛、口、鼻の位置などが画像内のどこにあるか - 分類 - 目が開いているのか、閉じているのか - 笑っているのか 出典: ML Kit Guides https://developers.google.com/ml-kit/vision/face-detection/face-detection-concepts
Face detectionの実装 - 依存モジュールを組み込む - 推論対象のイメージを渡す - 推論結果を処理する
Face detectionの実装
作ってみた(デモ) - 笑顔を認識して、自動で写真を撮ってくれるカメラアプリ(Android) - セルフィーでボタンが押しづらい - 全員笑ってる写真を撮りたい etc - Face
detectionを使う - https://developers.google.com/ml-kit/vision/face-detection
サンプルアプリの実装の概略 - CameraXを利用 - FaceDetectorがMLKitのクラス
TensorFlow Lite or MLKit? - まずはMLKitがおすすめ - 認識精度、パフォーマンスが悪いなど要件が合わなければ TensorFlow Liteを検討
- 自前でモデルを作ったとしても、推論結果をアプリで使いやすいように実装する必要がある - MLKitが認識できない例 - どの国の国旗か - どの会社のロゴか - その人が誰なのか - どのブランドの製品なのか - どの昆虫の種類なのか
on-device ML向けのモデルを作るには? - TensorFlowでモデルを作り、TensorFlow Liteに変換 - AutoML - TensorFlow Lite
Model Maker - 転移学習を用いて、 on-device向けにモデルを作成できるライブラリ。
on-device MLを組み込むときに迷ったら - On-Device Machine Learning - https://developers.google.com/learn/topics/on-device-ml - プラットフォームやユースケースを選ぶと、適切な方法を提示してくれる。
まとめ - まずはMLKitがおすすめ - やりたいことに応じて、自分でモデルを作るか検討しましょう