Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
モバイルアプリで機械学習入門/introduction-to-machine-learning...
Search
marchin
December 09, 2021
Programming
0
420
モバイルアプリで機械学習入門/introduction-to-machine-learning-in-mobile-app
marchin
December 09, 2021
Tweet
Share
More Decks by marchin
See All by marchin
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
620
Amazon Athenaで気軽に始める データ分析/athena-data-analytics
marchin1989
0
520
WebAPI開発のためのOpenAPI入門/entry-open-api
marchin1989
1
1.2k
AWS Glueではじめるデータレイク
marchin1989
0
580
やさしく入門するOAuth2.0/easy-entry-oauth
marchin1989
7
1.3k
1時間半で克服するJavaScriptの非同期処理/async_javascript_kokufuku
marchin1989
2
1.3k
自動テストでモックするって、なにそれ?おいしいの?/what_is_mocking
marchin1989
1
1.1k
たぶんもう怖くないGit/maybe-not-afraid-of-git-anymore
marchin1989
2
2.2k
Other Decks in Programming
See All in Programming
Unity Android XR入門
sakutama_11
0
140
Lottieアニメーションをカスタマイズしてみた
tahia910
0
120
“あなた” の開発を支援する AI エージェント Bedrock Engineer / introducing-bedrock-engineer
gawa
11
1.8k
Kanzawa.rbのLT大会を支える技術の裏側を変更する Ruby on Rails + Litestream 編
muryoimpl
0
220
一休.com のログイン体験を支える技術 〜Web Components x Vue.js 活用事例と最適化について〜
atsumim
0
110
【PHP】破壊的バージョンアップと戦った話〜決断と説得
satoshi256kbyte
0
120
定理証明プラットフォーム lapisla.net
abap34
1
1.7k
Amazon ECS とマイクロサービスから考えるシステム構成
hiyanger
2
490
Immutable ActiveRecord
megane42
0
130
パスキーのすべて ── 導入・UX設計・実装の紹介 / 20250213 パスキー開発者の集い
kuralab
3
670
AIの力でお手軽Chrome拡張機能作り
taiseiue
0
170
AWS Organizations で実現する、 マルチ AWS アカウントのルートユーザー管理からの脱却
atpons
0
130
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
67
11k
Navigating Team Friction
lara
183
15k
4 Signs Your Business is Dying
shpigford
182
22k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
How to Ace a Technical Interview
jacobian
276
23k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Automating Front-end Workflow
addyosmani
1367
200k
Code Review Best Practice
trishagee
66
17k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Transcript
モバイルアプリで機械学習入門 ML Kitを使ったカメラアプリ実装
自己紹介 - 名前: 阿部 - 仕事: 主にAndroidエンジニア - 最近はサーバサイド Kotlinの仕事も始めました
- 趣味 - コーヒー、ビール、アニメ、ゲーム、読書、 etc... - Twitter: @marchin_1989
アジェンダ - on-device machine learning とは - MLKitの紹介 - MLKit
Face Detectionの機能の説明とデモンストレーション
on-device machine learning(on-device ML)とは - サーバ側ではなく、モバイルといったクライアントサイドで機械学習を行うこと
- 要件によるが以下のようなことを検討して決める。 クライアント(on-device)、サーバ、どちらでMLするか クライアント (on-device ML) リアルタイムに処理したい (ネットワーク通信の遅延がない ) データをサーバにあげたくない
ネットワークに繋げられない サーバ マシンパワーが必要 常に最新のモデルを使う必要がある 学習済みモデルを守りたい
on-device MLの例(スマホアプリ) - Google翻訳 - YouTube(AR Beauty Try-On) 出典: ITmedia
NEWS https://www.itmedia.co.jp/news/articles/1906/20/news069.html 出典: Google Play https://play.google.com/store/apps/details?id=com.google.android.apps.translate
on-device MLの機能を実装するためのフレームワーク - モバイル端末上で推論するためのフレー ムワーク。 - tensor flowで作ったモデルをtensor flow liteのモデルに変換できる
- Android, iOS, IoTデバイスで利用可能 - TensorFLow hubに学習済みのモデルが 提供されていたりする - よくある機械学習のユースケースと学習済み モデルをラップして、使いやすくしたもの。 - 機能によってはカスタムの TensorFlow Lite のモデルが使える。 - Android, iOSで利用可能
on-device MLをスクラッチで作成すると... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitを使うと... 出典: Google I/O 2021 TensorFlowセッション ML Kit: Turnkey
APIs to use on-device ML in mobile apps | Session https://www.youtube.com/watch?v=CQ8iEqblWtY
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
ML Kitの機能 出典: Google Developers blog https://developers.googleblog.com/2021/03/ml-kit-is-now-in-ga-introducing-selfie.html
Face detectionの機能 - 顔認識 - 画像内のどこに顔があるのか認識(複数の顔も可能) - 顔のトラッキング - 一度認識した顔を、流れてくる画像に対してトラッキングしてくれる。
- ランドマーク - 顔の輪郭や、左目、右目、眉毛、口、鼻の位置などが画像内のどこにあるか - 分類 - 目が開いているのか、閉じているのか - 笑っているのか 出典: ML Kit Guides https://developers.google.com/ml-kit/vision/face-detection/face-detection-concepts
Face detectionの実装 - 依存モジュールを組み込む - 推論対象のイメージを渡す - 推論結果を処理する
Face detectionの実装
作ってみた(デモ) - 笑顔を認識して、自動で写真を撮ってくれるカメラアプリ(Android) - セルフィーでボタンが押しづらい - 全員笑ってる写真を撮りたい etc - Face
detectionを使う - https://developers.google.com/ml-kit/vision/face-detection
サンプルアプリの実装の概略 - CameraXを利用 - FaceDetectorがMLKitのクラス
TensorFlow Lite or MLKit? - まずはMLKitがおすすめ - 認識精度、パフォーマンスが悪いなど要件が合わなければ TensorFlow Liteを検討
- 自前でモデルを作ったとしても、推論結果をアプリで使いやすいように実装する必要がある - MLKitが認識できない例 - どの国の国旗か - どの会社のロゴか - その人が誰なのか - どのブランドの製品なのか - どの昆虫の種類なのか
on-device ML向けのモデルを作るには? - TensorFlowでモデルを作り、TensorFlow Liteに変換 - AutoML - TensorFlow Lite
Model Maker - 転移学習を用いて、 on-device向けにモデルを作成できるライブラリ。
on-device MLを組み込むときに迷ったら - On-Device Machine Learning - https://developers.google.com/learn/topics/on-device-ml - プラットフォームやユースケースを選ぶと、適切な方法を提示してくれる。
まとめ - まずはMLKitがおすすめ - やりたいことに応じて、自分でモデルを作るか検討しましょう